Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import datetime
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile
|
| 9 |
+
from wavmark.utils import file_reader
|
| 10 |
+
|
| 11 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 12 |
+
|
| 13 |
+
# st.title("Hot Dog? Or Not?")
|
| 14 |
+
|
| 15 |
+
# file_name = st.file_uploader("Upload a hot dog candidate image")
|
| 16 |
+
|
| 17 |
+
# if file_name is not None:
|
| 18 |
+
# col1, col2 = st.columns(2)
|
| 19 |
+
|
| 20 |
+
# image = Image.open(file_name)
|
| 21 |
+
# col1.image(image, use_column_width=True)
|
| 22 |
+
# predictions = pipeline(image)
|
| 23 |
+
|
| 24 |
+
# col2.header("Probabilities")
|
| 25 |
+
# for p in predictions:
|
| 26 |
+
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
| 27 |
+
|
| 28 |
+
def create_default_value():
|
| 29 |
+
if "def_value" not in st.session_state:
|
| 30 |
+
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
| 31 |
+
def_val_str = "".join([str(i) for i in def_val_npy])
|
| 32 |
+
st.session_state.def_value = def_val_str
|
| 33 |
+
|
| 34 |
+
# Main web app
|
| 35 |
+
def main():
|
| 36 |
+
create_default_value()
|
| 37 |
+
|
| 38 |
+
# st.title("MDS07")
|
| 39 |
+
# st.write("https://github.com/wavmark/wavmark")
|
| 40 |
+
markdown_text = """
|
| 41 |
+
# MDS07
|
| 42 |
+
[AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI.
|
| 43 |
+
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
|
| 44 |
+
|
| 45 |
+
This page is for demonstration usage and only process **the first minute** of the audio.
|
| 46 |
+
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
# 使用st.markdown渲染Markdown文本
|
| 50 |
+
st.markdown(markdown_text)
|
| 51 |
+
|
| 52 |
+
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
| 53 |
+
|
| 54 |
+
if audio_file:
|
| 55 |
+
# 保存文件到本地:
|
| 56 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 57 |
+
with open(tmp_input_audio_file, "wb") as f:
|
| 58 |
+
f.write(audio_file.getbuffer())
|
| 59 |
+
|
| 60 |
+
# 展示文件到页面上
|
| 61 |
+
# st.audio(tmp_input_audio_file, format="audio/wav")
|
| 62 |
+
|
| 63 |
+
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
|
| 64 |
+
|
| 65 |
+
# if action == "Add Watermark":
|
| 66 |
+
# watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 67 |
+
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 68 |
+
# if add_watermark_button: # 点击按钮后执行的
|
| 69 |
+
# if audio_file and watermark_text:
|
| 70 |
+
# with st.spinner("Adding Watermark..."):
|
| 71 |
+
# watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
|
| 72 |
+
# st.write("Watermarked Audio:")
|
| 73 |
+
# print("watermarked_audio:", watermarked_audio)
|
| 74 |
+
# st.audio(watermarked_audio, format="audio/wav")
|
| 75 |
+
# st.write("Time Cost: %d seconds" % encode_time_cost)
|
| 76 |
+
|
| 77 |
+
# # st.button("Add Watermark", disabled=False)
|
| 78 |
+
# elif action == "Decode Watermark":
|
| 79 |
+
# if st.button("Decode"):
|
| 80 |
+
# with st.spinner("Decoding..."):
|
| 81 |
+
# decode_watermark(tmp_input_audio_file)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
# default_sr = 16000
|
| 86 |
+
# max_second_encode = 60
|
| 87 |
+
# max_second_decode = 30
|
| 88 |
+
# len_start_bit = 16
|
| 89 |
+
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 90 |
+
# model = wavmark.load_model().to(device)
|
| 91 |
+
main()
|
| 92 |
+
|
| 93 |
+
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
|
| 94 |
+
|
| 95 |
+
# decoded_watermark, decode_cost = decode_watermark(audio_path)
|
| 96 |
+
# print(decoded_watermark)
|