Spaces:
Sleeping
Sleeping
Create vocab.py
Browse files
vocab.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
import glob
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torchvision.models as models
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import optim
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from torchvision import transforms
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
class Vocabulary:
|
21 |
+
def __init__(self, vocabulary_file_path):
|
22 |
+
#Initialize the Vocabulary object.
|
23 |
+
# Load vocabulary from the provided file path
|
24 |
+
self.vocabulary = self._load_vocabulary(vocabulary_file_path)
|
25 |
+
# Create a mapping from words to indices
|
26 |
+
self.vocabulary2idx = {word: idx for idx, word in enumerate(self.vocabulary)}
|
27 |
+
# Store the total size of the vocabulary
|
28 |
+
self.vocabulary_size = len(self.vocabulary)
|
29 |
+
|
30 |
+
def _load_vocabulary(self, vocabulary_file_path):
|
31 |
+
#Load vocabulary from a file.
|
32 |
+
with open(vocabulary_file_path, 'r') as file:
|
33 |
+
# Read each line, strip extra whitespace, and return as a list
|
34 |
+
vocabulary = [line.strip() for line in file]
|
35 |
+
return vocabulary
|
36 |
+
|
37 |
+
def word2idx(self, word):
|
38 |
+
#Convert a word to its corresponding index.
|
39 |
+
# Return the index of the word or the index of '<unk>' if the word is not in the vocabulary
|
40 |
+
return self.vocabulary2idx.get(word, self.vocabulary2idx.get('<unk>'))
|
41 |
+
|
42 |
+
def idx2word(self, idx):
|
43 |
+
#Convert an index back to its corresponding word.
|
44 |
+
return self.vocabulary[idx]
|
45 |
+
|