Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	update files
Browse files- MT.py +338 -0
 - Model_example.pth.tar +3 -0
 - PatternCell_2.mp4 +0 -0
 - UnclassifiedCell_2.mp4 +0 -0
 - V1.py +909 -0
 
    	
        MT.py
    ADDED
    
    | 
         @@ -0,0 +1,338 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            import math
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class ConvGRU(nn.Module):
         
     | 
| 9 | 
         
            +
                def __init__(self, hidden_dim=128, input_dim=192 + 128):
         
     | 
| 10 | 
         
            +
                    super(ConvGRU, self).__init__()
         
     | 
| 11 | 
         
            +
                    self.convz = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)
         
     | 
| 12 | 
         
            +
                    self.convr = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)
         
     | 
| 13 | 
         
            +
                    self.convq = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                def forward(self, h, x):
         
     | 
| 16 | 
         
            +
                    hx = torch.cat([h, x], dim=1)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                    z = torch.sigmoid(self.convz(hx))
         
     | 
| 19 | 
         
            +
                    r = torch.sigmoid(self.convr(hx))
         
     | 
| 20 | 
         
            +
                    q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                    h = (1 - z) * h + z * q
         
     | 
| 23 | 
         
            +
                    return h
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            class SepConvGRU(nn.Module):
         
     | 
| 27 | 
         
            +
                def __init__(self, hidden_dim=128, input_dim=192 + 128):
         
     | 
| 28 | 
         
            +
                    super(SepConvGRU, self).__init__()
         
     | 
| 29 | 
         
            +
                    self.convz1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 30 | 
         
            +
                    self.convr1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 31 | 
         
            +
                    self.convq1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    self.convz2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 34 | 
         
            +
                    self.convr2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 35 | 
         
            +
                    self.convq2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def forward(self, h, x):
         
     | 
| 38 | 
         
            +
                    # horizontal
         
     | 
| 39 | 
         
            +
                    hx = torch.cat([h, x], dim=1)
         
     | 
| 40 | 
         
            +
                    z = torch.sigmoid(self.convz1(hx))
         
     | 
| 41 | 
         
            +
                    r = torch.sigmoid(self.convr1(hx))
         
     | 
| 42 | 
         
            +
                    q = torch.tanh(self.convq1(torch.cat([r * h, x], dim=1)))
         
     | 
| 43 | 
         
            +
                    h = (1 - z) * h + z * q
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    # vertical
         
     | 
| 46 | 
         
            +
                    hx = torch.cat([h, x], dim=1)
         
     | 
| 47 | 
         
            +
                    z = torch.sigmoid(self.convz2(hx))
         
     | 
| 48 | 
         
            +
                    r = torch.sigmoid(self.convr2(hx))
         
     | 
| 49 | 
         
            +
                    q = torch.tanh(self.convq2(torch.cat([r * h, x], dim=1)))
         
     | 
| 50 | 
         
            +
                    h = (1 - z) * h + z * q
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    return h
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            class GRU(nn.Module):
         
     | 
| 56 | 
         
            +
                def __init__(self, hidden_dim=128, input_dim=192 + 128):
         
     | 
| 57 | 
         
            +
                    super(GRU, self).__init__()
         
     | 
| 58 | 
         
            +
                    self.convz1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 59 | 
         
            +
                    self.convr1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 60 | 
         
            +
                    self.convq1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.convz2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 63 | 
         
            +
                    self.convr2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 64 | 
         
            +
                    self.convq2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                def forward(self, hidden, x, shape):
         
     | 
| 67 | 
         
            +
                    # horizontal
         
     | 
| 68 | 
         
            +
                    b, l, c = hidden.shape
         
     | 
| 69 | 
         
            +
                    h, w = shape
         
     | 
| 70 | 
         
            +
                    hidden = hidden.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
         
     | 
| 71 | 
         
            +
                    x = x.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    hx = torch.cat([hidden, x], dim=1)
         
     | 
| 74 | 
         
            +
                    z = torch.sigmoid(self.convz1(hx))
         
     | 
| 75 | 
         
            +
                    r = torch.sigmoid(self.convr1(hx))
         
     | 
| 76 | 
         
            +
                    q = torch.tanh(self.convq1(torch.cat([r * hidden, x], dim=1)))
         
     | 
| 77 | 
         
            +
                    hidden = (1 - z) * hidden + z * q
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    # vertical
         
     | 
| 80 | 
         
            +
                    hx = torch.cat([hidden, x], dim=1)
         
     | 
| 81 | 
         
            +
                    z = torch.sigmoid(self.convz2(hx))
         
     | 
| 82 | 
         
            +
                    r = torch.sigmoid(self.convr2(hx))
         
     | 
| 83 | 
         
            +
                    q = torch.tanh(self.convq2(torch.cat([r * hidden, x], dim=1)))
         
     | 
| 84 | 
         
            +
                    hidden = (1 - z) * hidden + z * q
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                    return hidden.flatten(-2).permute(0, 2, 1)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            class PositionEmbeddingSine(nn.Module):
         
     | 
| 90 | 
         
            +
                """
         
     | 
| 91 | 
         
            +
                This is a more standard version of the position embedding, very similar to the one
         
     | 
| 92 | 
         
            +
                used by the Attention is all you need paper, generalized to work on images.
         
     | 
| 93 | 
         
            +
                """
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                def __init__(self, num_pos_feats=64, temperature=10000, normalize=True, scale=None):
         
     | 
| 96 | 
         
            +
                    super().__init__()
         
     | 
| 97 | 
         
            +
                    self.num_pos_feats = num_pos_feats
         
     | 
| 98 | 
         
            +
                    self.temperature = temperature
         
     | 
| 99 | 
         
            +
                    self.normalize = normalize
         
     | 
| 100 | 
         
            +
                    if scale is not None and normalize is False:
         
     | 
| 101 | 
         
            +
                        raise ValueError("normalize should be True if scale is passed")
         
     | 
| 102 | 
         
            +
                    if scale is None:
         
     | 
| 103 | 
         
            +
                        scale = 2 * math.pi
         
     | 
| 104 | 
         
            +
                    self.scale = scale
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def forward(self, x):
         
     | 
| 107 | 
         
            +
                    # x = tensor_list.tensors  # [B, C, H, W]
         
     | 
| 108 | 
         
            +
                    # mask = tensor_list.mask  # [B, H, W], input with padding, valid as 0
         
     | 
| 109 | 
         
            +
                    b, c, h, w = x.size()
         
     | 
| 110 | 
         
            +
                    mask = torch.ones((b, h, w), device=x.device)  # [B, H, W]
         
     | 
| 111 | 
         
            +
                    y_embed = mask.cumsum(1, dtype=torch.float32)
         
     | 
| 112 | 
         
            +
                    x_embed = mask.cumsum(2, dtype=torch.float32)
         
     | 
| 113 | 
         
            +
                    #
         
     | 
| 114 | 
         
            +
                    # y_embed = (y_embed / 2) ** 2
         
     | 
| 115 | 
         
            +
                    # x_embed = (x_embed / 2) ** 2
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    if self.normalize:
         
     | 
| 118 | 
         
            +
                        eps = 1e-6
         
     | 
| 119 | 
         
            +
                        y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
         
     | 
| 120 | 
         
            +
                        x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                        # using an exponential
         
     | 
| 123 | 
         
            +
                    dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
         
     | 
| 124 | 
         
            +
                    dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    pos_x = x_embed[:, :, :, None] / dim_t
         
     | 
| 127 | 
         
            +
                    pos_y = y_embed[:, :, :, None] / dim_t
         
     | 
| 128 | 
         
            +
                    pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
         
     | 
| 129 | 
         
            +
                    pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
         
     | 
| 130 | 
         
            +
                    pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
         
     | 
| 131 | 
         
            +
                    return pos
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            def feature_add_position(feature0, feature_channels, scale=1.0):
         
     | 
| 135 | 
         
            +
                temp = torch.mean(abs(feature0))
         
     | 
| 136 | 
         
            +
                pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2)
         
     | 
| 137 | 
         
            +
                # position = PositionalEncodingPermute2D(feature_channels)(feature0)
         
     | 
| 138 | 
         
            +
                position = pos_enc(feature0)
         
     | 
| 139 | 
         
            +
                feature0 = feature0 + (temp * position / position.mean()) * scale * torch.pi
         
     | 
| 140 | 
         
            +
                feature0 = feature0 * temp / torch.mean(abs(feature0), dim=(1, 2, 3), keepdim=True)
         
     | 
| 141 | 
         
            +
                return feature0
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
            def feature_add_image_content(feature0, add_fea, scale=0.4):
         
     | 
| 145 | 
         
            +
                temp = torch.mean(abs(feature0))
         
     | 
| 146 | 
         
            +
                position = add_fea
         
     | 
| 147 | 
         
            +
                feature0 = feature0 + (temp * position / position.mean()) * scale * torch.pi
         
     | 
| 148 | 
         
            +
                feature0 = feature0 * temp / torch.mean(abs(feature0), dim=(1, 2, 3), keepdim=True)
         
     | 
| 149 | 
         
            +
                return feature0
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            class AttUp(nn.Module):
         
     | 
| 153 | 
         
            +
                def __init__(self,
         
     | 
| 154 | 
         
            +
                             c=512
         
     | 
| 155 | 
         
            +
                             ):
         
     | 
| 156 | 
         
            +
                    super(AttUp, self).__init__()
         
     | 
| 157 | 
         
            +
                    self.proj = nn.Linear(c, c, bias=False)
         
     | 
| 158 | 
         
            +
                    self.norm = nn.LayerNorm(c)
         
     | 
| 159 | 
         
            +
                    self.conv = nn.Sequential(nn.Conv2d(2 * c, c, kernel_size=1, stride=1, padding=0),
         
     | 
| 160 | 
         
            +
                                              nn.GELU(),
         
     | 
| 161 | 
         
            +
                                              nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1),
         
     | 
| 162 | 
         
            +
                                              nn.GELU(),
         
     | 
| 163 | 
         
            +
                                              nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1),
         
     | 
| 164 | 
         
            +
                                              nn.GELU()
         
     | 
| 165 | 
         
            +
                                              )
         
     | 
| 166 | 
         
            +
                    self.gru = SepConvGRU(c, c)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                def forward(self, att, message, shape):
         
     | 
| 169 | 
         
            +
                    # q, k, v: [B, L, C]
         
     | 
| 170 | 
         
            +
                    b, l, c = att.shape
         
     | 
| 171 | 
         
            +
                    h, w = shape
         
     | 
| 172 | 
         
            +
                    message = self.norm(self.proj(message)).view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
         
     | 
| 173 | 
         
            +
                    att = att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
         
     | 
| 174 | 
         
            +
                    message = self.conv(torch.cat([att, message], dim=1))
         
     | 
| 175 | 
         
            +
                    att = self.gru(att, message).flatten(-2).permute(0, 2, 1)
         
     | 
| 176 | 
         
            +
                    # [B, H*W, C]
         
     | 
| 177 | 
         
            +
                    return att
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
            class TransformerLayer(nn.Module):
         
     | 
| 181 | 
         
            +
                def __init__(self,
         
     | 
| 182 | 
         
            +
                             d_model=256,
         
     | 
| 183 | 
         
            +
                             nhead=1,
         
     | 
| 184 | 
         
            +
                             no_ffn=False,
         
     | 
| 185 | 
         
            +
                             ffn_dim_expansion=4
         
     | 
| 186 | 
         
            +
                             ):
         
     | 
| 187 | 
         
            +
                    super(TransformerLayer, self).__init__()
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    self.dim = d_model
         
     | 
| 190 | 
         
            +
                    self.nhead = nhead
         
     | 
| 191 | 
         
            +
                    self.no_ffn = no_ffn
         
     | 
| 192 | 
         
            +
                    # multi-head attention
         
     | 
| 193 | 
         
            +
                    self.att_proj = nn.Sequential(nn.Linear(d_model, d_model, bias=False), nn.ReLU(inplace=True),
         
     | 
| 194 | 
         
            +
                                                  nn.Linear(d_model, d_model, bias=False))
         
     | 
| 195 | 
         
            +
                    self.v_proj = nn.Linear(d_model, d_model, bias=False)
         
     | 
| 196 | 
         
            +
                    self.merge = nn.Linear(d_model, d_model, bias=False)
         
     | 
| 197 | 
         
            +
                    self.gru = GRU(d_model, d_model)
         
     | 
| 198 | 
         
            +
                    self.attn_updater = AttUp(d_model)
         
     | 
| 199 | 
         
            +
                    self.drop = nn.Dropout(p=0.8)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    self.norm1 = nn.LayerNorm(d_model)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    # no ffn after self-attn, with ffn after cross-attn
         
     | 
| 204 | 
         
            +
                    if not self.no_ffn:
         
     | 
| 205 | 
         
            +
                        in_channels = d_model * 2
         
     | 
| 206 | 
         
            +
                        self.mlp = nn.Sequential(
         
     | 
| 207 | 
         
            +
                            nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False),
         
     | 
| 208 | 
         
            +
                            nn.GELU(),
         
     | 
| 209 | 
         
            +
                            nn.Linear(in_channels * ffn_dim_expansion, in_channels * ffn_dim_expansion, bias=False),
         
     | 
| 210 | 
         
            +
                            nn.GELU(),
         
     | 
| 211 | 
         
            +
                            nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False),
         
     | 
| 212 | 
         
            +
                        )
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                        self.norm2 = nn.LayerNorm(d_model)
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                def forward(self, att, value,
         
     | 
| 217 | 
         
            +
                            shape, iteration=0):
         
     | 
| 218 | 
         
            +
                    # source, target: [B, L, C]
         
     | 
| 219 | 
         
            +
                    max_exp_scale = 3 * torch.pi
         
     | 
| 220 | 
         
            +
                    # single-head attention
         
     | 
| 221 | 
         
            +
                    B, L, C = value.shape
         
     | 
| 222 | 
         
            +
                    if iteration == 0:
         
     | 
| 223 | 
         
            +
                        att = feature_add_position(att.transpose(-1, -2).view(
         
     | 
| 224 | 
         
            +
                            B, C, shape[0], shape[1]), C).reshape(B, C, -1).transpose(-1, -2)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                        # att = feature_add_position(att.transpose(-1, -2).view(
         
     | 
| 227 | 
         
            +
                        #     B, C, shape[0], shape[1]), C).reshape(B, C, -1).transpose(-1, -2)
         
     | 
| 228 | 
         
            +
                    val_proj = self.v_proj(value)
         
     | 
| 229 | 
         
            +
                    att_proj = self.att_proj(att)  # [B, L, C]
         
     | 
| 230 | 
         
            +
                    norm_fac = torch.sum(att_proj ** 2, dim=-1, keepdim=True) ** 0.5
         
     | 
| 231 | 
         
            +
                    scale = max_exp_scale * torch.sigmoid(torch.mean(att_proj, dim=[-1, -2], keepdim=True)) + 1
         
     | 
| 232 | 
         
            +
                    A = torch.exp(scale * torch.matmul(att_proj / norm_fac, att_proj.permute(0, 2, 1) / norm_fac.permute(0, 2, 1)))
         
     | 
| 233 | 
         
            +
                    A = A / A.max()
         
     | 
| 234 | 
         
            +
                    # I = torch.eye(A.shape[-1], device=A.device).unsqueeze(0)
         
     | 
| 235 | 
         
            +
                    # # A[I.repeat(B, 1, 1) == 1] = 1e-6  # remove self-prop
         
     | 
| 236 | 
         
            +
                    D = torch.sum(A, dim=-1, keepdim=True)
         
     | 
| 237 | 
         
            +
                    D = 1 / (torch.sqrt(D) + 1e-6)  # normalized node degrees
         
     | 
| 238 | 
         
            +
                    A = D * A * D.transpose(-1, -2)
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    # A = torch.softmax(A , dim=2)  # [B, L, L]
         
     | 
| 241 | 
         
            +
                    message = torch.matmul(A, val_proj)  # [B, L, C]
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    message = self.merge(message)  # [B, L, C]
         
     | 
| 244 | 
         
            +
                    message = self.norm1(message)
         
     | 
| 245 | 
         
            +
                    if not self.no_ffn:
         
     | 
| 246 | 
         
            +
                        message = self.mlp(torch.cat([value, message], dim=-1))
         
     | 
| 247 | 
         
            +
                        message = self.norm2(message)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    # if iteration > 2:
         
     | 
| 250 | 
         
            +
                    #     message = self.drop(message)
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    att = self.attn_updater(att, message, shape)
         
     | 
| 253 | 
         
            +
                    value = self.gru(value, message, shape)
         
     | 
| 254 | 
         
            +
                    return value, att, A
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
            class FeatureTransformer(nn.Module):
         
     | 
| 258 | 
         
            +
                def __init__(self,
         
     | 
| 259 | 
         
            +
                             num_layers=6,
         
     | 
| 260 | 
         
            +
                             d_model=128
         
     | 
| 261 | 
         
            +
                             ):
         
     | 
| 262 | 
         
            +
                    super(FeatureTransformer, self).__init__()
         
     | 
| 263 | 
         
            +
                    self.d_model = d_model
         
     | 
| 264 | 
         
            +
                    # self.layers = nn.ModuleList([TransformerLayer(self.d_model, no_ffn=False, ffn_dim_expansion=2)
         
     | 
| 265 | 
         
            +
                    #                              for i in range(num_layers)])
         
     | 
| 266 | 
         
            +
                    self.layers = TransformerLayer(self.d_model, no_ffn=False, ffn_dim_expansion=2)
         
     | 
| 267 | 
         
            +
                    self.re_proj = nn.Sequential(nn.Linear(d_model, d_model), nn.GELU(), nn.Linear(d_model, d_model))
         
     | 
| 268 | 
         
            +
                    self.num_layers = num_layers
         
     | 
| 269 | 
         
            +
                    self.norm_sigma = nn.Parameter(torch.tensor(1.0, requires_grad=True), requires_grad=True)
         
     | 
| 270 | 
         
            +
                    self.norm_k = nn.Parameter(torch.tensor(1.8, requires_grad=True), requires_grad=True)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                    for p in self.parameters():
         
     | 
| 273 | 
         
            +
                        if p.dim() > 1:
         
     | 
| 274 | 
         
            +
                            nn.init.xavier_uniform_(p)
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                def normalize(self, x):  # TODO
         
     | 
| 277 | 
         
            +
                    sum_activation = torch.mean(x, dim=[1, 2], keepdim=True) + torch.square(self.norm_sigma)
         
     | 
| 278 | 
         
            +
                    x = self.norm_k.abs() * x / sum_activation
         
     | 
| 279 | 
         
            +
                    return x
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                def forward(self, feature0):
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                    feature_list = []
         
     | 
| 284 | 
         
            +
                    attn_list = []
         
     | 
| 285 | 
         
            +
                    attn_viz_list = []
         
     | 
| 286 | 
         
            +
                    b, c, h, w = feature0.shape
         
     | 
| 287 | 
         
            +
                    assert self.d_model == c
         
     | 
| 288 | 
         
            +
                    value = feature0.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
         
     | 
| 289 | 
         
            +
                    att = feature0
         
     | 
| 290 | 
         
            +
                    att = att.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
         
     | 
| 291 | 
         
            +
                    for i in range(self.num_layers):
         
     | 
| 292 | 
         
            +
                        value, att, attn_viz = self.layers(att=att, value=value, shape=[h, w], iteration=i)
         
     | 
| 293 | 
         
            +
                        attn_viz = attn_viz.reshape(b, h, w, h, w)
         
     | 
| 294 | 
         
            +
                        attn_viz_list.append(attn_viz)
         
     | 
| 295 | 
         
            +
                        value_decode = self.normalize(
         
     | 
| 296 | 
         
            +
                            torch.square(self.re_proj(value)))  # map to motion energy, Do use normalization here
         
     | 
| 297 | 
         
            +
                        # print("value_decode",value_decode.abs().mean())
         
     | 
| 298 | 
         
            +
                        attn_list.append(att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
         
     | 
| 299 | 
         
            +
                        feature_list.append(value_decode.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
         
     | 
| 300 | 
         
            +
                    # reshape back
         
     | 
| 301 | 
         
            +
                    return feature_list, attn_list, attn_viz_list
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                def forward_save_mem(self, feature0, add_position_embedding=True):
         
     | 
| 304 | 
         
            +
                    feature_list = []
         
     | 
| 305 | 
         
            +
                    attn_list = []
         
     | 
| 306 | 
         
            +
                    attn_viz_list = []
         
     | 
| 307 | 
         
            +
                    b, c, h, w = feature0.shape
         
     | 
| 308 | 
         
            +
                    assert self.d_model == c
         
     | 
| 309 | 
         
            +
                    value = feature0.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
         
     | 
| 310 | 
         
            +
                    att = feature0
         
     | 
| 311 | 
         
            +
                    att = att.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
         
     | 
| 312 | 
         
            +
                    for i in range(self.num_layers):
         
     | 
| 313 | 
         
            +
                        value, att, _ = self.layers(att=att, value=value, shape=[h, w], iteration=i)
         
     | 
| 314 | 
         
            +
                        value_decode = self.normalize(
         
     | 
| 315 | 
         
            +
                            torch.square(self.re_proj(value)))  # map to motion energy, Do use normalization here
         
     | 
| 316 | 
         
            +
                        # print("value_decode",value_decode.abs().mean())
         
     | 
| 317 | 
         
            +
                        attn_list.append(att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
         
     | 
| 318 | 
         
            +
                        feature_list.append(value_decode.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
         
     | 
| 319 | 
         
            +
                    # reshape back
         
     | 
| 320 | 
         
            +
                    return feature_list, attn_list
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                @staticmethod
         
     | 
| 323 | 
         
            +
                def demo():
         
     | 
| 324 | 
         
            +
                    import time
         
     | 
| 325 | 
         
            +
                    frame_list = torch.randn([4, 256, 64, 64], device="cuda")
         
     | 
| 326 | 
         
            +
                    model = FeatureTransformer(6, 256).cuda()
         
     | 
| 327 | 
         
            +
                    for i in range(100):
         
     | 
| 328 | 
         
            +
                        start = time.time()
         
     | 
| 329 | 
         
            +
                        output = model(frame_list)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                        torch.mean(output[-1][-1]).backward()
         
     | 
| 332 | 
         
            +
                        end = time.time()
         
     | 
| 333 | 
         
            +
                        print(end - start)
         
     | 
| 334 | 
         
            +
                        print("#================================++#")
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 338 | 
         
            +
                FeatureTransformer.demo()
         
     | 
    	
        Model_example.pth.tar
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:666be808823bae9a29493cb967e8ba233304ff7eaf962133bf6e6499e9c42346
         
     | 
| 3 | 
         
            +
            size 58749697
         
     | 
    	
        PatternCell_2.mp4
    ADDED
    
    | 
         Binary file (138 kB). View file 
     | 
| 
         | 
    	
        UnclassifiedCell_2.mp4
    ADDED
    
    | 
         Binary file (186 kB). View file 
     | 
| 
         | 
    	
        V1.py
    ADDED
    
    | 
         @@ -0,0 +1,909 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from io import BytesIO
         
     | 
| 5 | 
         
            +
            import numpy
         
     | 
| 6 | 
         
            +
            from torch import nn
         
     | 
| 7 | 
         
            +
            from torch.nn import functional as F
         
     | 
| 8 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 9 | 
         
            +
            import os
         
     | 
| 10 | 
         
            +
            import pandas as pd
         
     | 
| 11 | 
         
            +
            import imageio
         
     | 
| 12 | 
         
            +
            from torch.cuda.amp import autocast as autocast
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def cart2pol(x, y):
         
     | 
| 16 | 
         
            +
                rho = np.sqrt(x ** 2 + y ** 2)
         
     | 
| 17 | 
         
            +
                phi = np.arctan2(y, x)
         
     | 
| 18 | 
         
            +
                return (rho, phi)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def pol2cart(rho, phi):
         
     | 
| 22 | 
         
            +
                x = rho * np.cos(phi)
         
     | 
| 23 | 
         
            +
                y = rho * np.sin(phi)
         
     | 
| 24 | 
         
            +
                return (x, y)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            def inverse_sigmoid(p):
         
     | 
| 28 | 
         
            +
                return np.log(p / (1 - p))
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def artanh(y):
         
     | 
| 32 | 
         
            +
                return 0.5 * np.log((1 + y) / (1 - y))
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            class V1(nn.Module):
         
     | 
| 36 | 
         
            +
                """each input includes 10 frame with 25 frame/sec sampling rate
         
     | 
| 37 | 
         
            +
                temporal window size = 5 frame(200ms)
         
     | 
| 38 | 
         
            +
                spatial window size = 5*2 + 1 = 11
         
     | 
| 39 | 
         
            +
                spatial filter is
         
     | 
| 40 | 
         
            +
                lambda is frequency of cos wave
         
     | 
| 41 | 
         
            +
                """
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                def __init__(self, spatial_num=32, scale_num=8, scale_factor=16, kernel_radius=7, num_ft=32,
         
     | 
| 44 | 
         
            +
                             kernel_size=6, average_time=True):
         
     | 
| 45 | 
         
            +
                    super(V1, self).__init__()
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    def make_param(in_channels, values, requires_grad=True, dtype=None):
         
     | 
| 48 | 
         
            +
                        if dtype is None:
         
     | 
| 49 | 
         
            +
                            dtype = 'float32'
         
     | 
| 50 | 
         
            +
                        values = numpy.require(values, dtype=dtype)
         
     | 
| 51 | 
         
            +
                        n = in_channels * len(values)
         
     | 
| 52 | 
         
            +
                        data = torch.from_numpy(values).view(1, -1)
         
     | 
| 53 | 
         
            +
                        data = data.repeat(in_channels, 1)
         
     | 
| 54 | 
         
            +
                        return torch.nn.Parameter(data=data, requires_grad=requires_grad)
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    assert spatial_num == num_ft
         
     | 
| 57 | 
         
            +
                    scale_each_level = np.exp(1 / (scale_num - 1) * np.log(1 / scale_factor))
         
     | 
| 58 | 
         
            +
                    self.scale_each_level = scale_each_level
         
     | 
| 59 | 
         
            +
                    self.scale_num = scale_num
         
     | 
| 60 | 
         
            +
                    self.cell_index = 0
         
     | 
| 61 | 
         
            +
                    self.spatial_filter = nn.ModuleList([GaborFilters(kernel_radius=kernel_radius, num_units=spatial_num,random=False)
         
     | 
| 62 | 
         
            +
                                                         for i in range(scale_num)])
         
     | 
| 63 | 
         
            +
                    self.temporal_decay = 0.2
         
     | 
| 64 | 
         
            +
                    self.spatial_decay = 0.2
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    self.spatial_radius = kernel_radius
         
     | 
| 67 | 
         
            +
                    self.spatial_kernel_size = kernel_radius * 2 + 1
         
     | 
| 68 | 
         
            +
                    self.spatial_num = spatial_num
         
     | 
| 69 | 
         
            +
                    self.temporal_filter = nn.ModuleList([TemporalFilter(num_ft=num_ft, kernel_size=kernel_size, random=False)
         
     | 
| 70 | 
         
            +
                                                          for i in range(scale_num)])  # 16 filter
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                    self.n_frames = 11
         
     | 
| 73 | 
         
            +
                    self._num_after_st = spatial_num * scale_num
         
     | 
| 74 | 
         
            +
                    if not average_time:
         
     | 
| 75 | 
         
            +
                        self._num_after_st = self._num_after_st * (self.n_frames - kernel_size + 1)
         
     | 
| 76 | 
         
            +
                    if average_time:
         
     | 
| 77 | 
         
            +
                        self.temporal_pooling = make_param(self._num_after_st, np.ones((self.n_frames - kernel_size + 1)),
         
     | 
| 78 | 
         
            +
                                                           requires_grad=True)
         
     | 
| 79 | 
         
            +
                        # TODO: concentrate on middle frame
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                        self.temporal_pooling = make_param(self._num_after_st, [0.05, 0.1, 0.4, 0.4, 0.1, 0.05],
         
     | 
| 82 | 
         
            +
                                                           requires_grad=True)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    self.norm_sigma = make_param(1, np.array([0.2]), requires_grad=True)
         
     | 
| 85 | 
         
            +
                    self.spontaneous_firing = make_param(1, np.array([0.3]), requires_grad=True)
         
     | 
| 86 | 
         
            +
                    self.norm_k = make_param(1, np.array([4.0]), requires_grad=True)
         
     | 
| 87 | 
         
            +
                    self._average_time = average_time
         
     | 
| 88 | 
         
            +
                    self.t_sin = None
         
     | 
| 89 | 
         
            +
                    self.t_cos = None
         
     | 
| 90 | 
         
            +
                    self.s_sin = None
         
     | 
| 91 | 
         
            +
                    self.s_cos = None
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                def infer_scale(self, x, scale):  # x should be list of B,1,H,W
         
     | 
| 94 | 
         
            +
                    energy_list = []
         
     | 
| 95 | 
         
            +
                    n = len(x)
         
     | 
| 96 | 
         
            +
                    B, C, H, W = x[0].shape
         
     | 
| 97 | 
         
            +
                    x = [img.unsqueeze(0) for img in x]
         
     | 
| 98 | 
         
            +
                    x = torch.cat(x, dim=0).reshape(n * B, C, H, W)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    sy = x.size(2)
         
     | 
| 101 | 
         
            +
                    sx = x.size(3)
         
     | 
| 102 | 
         
            +
                    s_sin = self.s_sin
         
     | 
| 103 | 
         
            +
                    s_cos = self.s_cos
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    gb_sin = s_sin.view(self.spatial_num, 1, self.spatial_kernel_size, self.spatial_kernel_size)
         
     | 
| 106 | 
         
            +
                    gb_cos = s_cos.view(self.spatial_num, 1, self.spatial_kernel_size, self.spatial_kernel_size)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                    # flip kernel
         
     | 
| 109 | 
         
            +
                    gb_sin = torch.flip(gb_sin, dims=[-1, -2])
         
     | 
| 110 | 
         
            +
                    gb_cos = torch.flip(gb_cos, dims=[-1, -2])
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                    res_sin = F.conv2d(input=x, weight=gb_sin,
         
     | 
| 113 | 
         
            +
                                       padding=self.spatial_radius, groups=1)
         
     | 
| 114 | 
         
            +
                    res_cos = F.conv2d(input=x, weight=gb_cos,
         
     | 
| 115 | 
         
            +
                                       padding=self.spatial_radius, groups=1)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    res_sin = res_sin.view(B, -1, sy, sx)
         
     | 
| 118 | 
         
            +
                    res_cos = res_cos.view(B, -1, sy, sx)
         
     | 
| 119 | 
         
            +
                    g_asin_list = res_sin.reshape(n, B, -1, H, W)
         
     | 
| 120 | 
         
            +
                    g_acos_list = res_cos.reshape(n, B, -1, H, W)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    for channel in range(self.spatial_filter[0].n_channels_post_conv):
         
     | 
| 123 | 
         
            +
                        k_sin = self.t_sin[channel, ...][None]
         
     | 
| 124 | 
         
            +
                        k_cos = self.t_cos[channel, ...][None]
         
     | 
| 125 | 
         
            +
                        # spatial filter
         
     | 
| 126 | 
         
            +
                        g_asin, g_acos = g_asin_list[:, :, channel, :, :], g_acos_list[:, :, channel, :, :]  # n,b,h,w
         
     | 
| 127 | 
         
            +
                        g_asin = g_asin.reshape(n, B * H * W, 1).permute(1, 2, 0)  # bhw,1,n
         
     | 
| 128 | 
         
            +
                        g_acos = g_acos.reshape(n, B * H * W, 1).permute(1, 2, 0)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                        # reverse the impulse response
         
     | 
| 131 | 
         
            +
                        k_sin = torch.flip(k_sin, dims=(-1,))
         
     | 
| 132 | 
         
            +
                        k_cos = torch.flip(k_cos, dims=(-1,))
         
     | 
| 133 | 
         
            +
                        #
         
     | 
| 134 | 
         
            +
                        a = F.conv1d(g_acos, k_sin, padding="valid", bias=None)
         
     | 
| 135 | 
         
            +
                        b = F.conv1d(g_asin, k_cos, padding="valid", bias=None)
         
     | 
| 136 | 
         
            +
                        g_o = a + b
         
     | 
| 137 | 
         
            +
                        a = F.conv1d(g_acos, k_cos, padding="valid", bias=None)
         
     | 
| 138 | 
         
            +
                        b = F.conv1d(g_asin, k_sin, padding="valid", bias=None)
         
     | 
| 139 | 
         
            +
                        g_e = a - b
         
     | 
| 140 | 
         
            +
                        energy_component = g_o ** 2 + g_e ** 2 + self.spontaneous_firing.square()
         
     | 
| 141 | 
         
            +
                        energy_component = energy_component.reshape(B, H, W, a.size(-1)).permute(0, 3, 1, 2)
         
     | 
| 142 | 
         
            +
                        if self._average_time:  # average motion energy across time
         
     | 
| 143 | 
         
            +
                            total_channel = scale * self.spatial_num + channel
         
     | 
| 144 | 
         
            +
                            pooling = self.temporal_pooling[total_channel][None, ..., None, None]
         
     | 
| 145 | 
         
            +
                            energy_component = abs(torch.mean(energy_component * pooling, dim=1, keepdim=True))
         
     | 
| 146 | 
         
            +
                        energy_list.append(energy_component)
         
     | 
| 147 | 
         
            +
                    energy_list = torch.cat(energy_list, dim=1)
         
     | 
| 148 | 
         
            +
                    return energy_list
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                def forward(self, image_list):
         
     | 
| 151 | 
         
            +
                    _, _, H, W = image_list[0].shape
         
     | 
| 152 | 
         
            +
                    MT_size = (H // 8, W // 8)
         
     | 
| 153 | 
         
            +
                    self.cell_index = 0
         
     | 
| 154 | 
         
            +
                    with torch.no_grad():
         
     | 
| 155 | 
         
            +
                        if image_list[0].max() > 10:
         
     | 
| 156 | 
         
            +
                            image_list = [img / 255.0 for img in image_list]  # [B, 1, H, W]  0-1
         
     | 
| 157 | 
         
            +
                        # I_mean = torch.cat(image_list, dim=0).mean()
         
     | 
| 158 | 
         
            +
                        # image_list = [(image - I_mean) for image in image_list]
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    ms_com = []
         
     | 
| 161 | 
         
            +
                    for scale in range(self.scale_num):
         
     | 
| 162 | 
         
            +
                        self.t_sin, self.t_cos = self.temporal_filter[scale].make_temporal_filter()
         
     | 
| 163 | 
         
            +
                        self.s_sin, self.s_cos = self.spatial_filter[scale].make_gabor_filters(quadrature=True)
         
     | 
| 164 | 
         
            +
                        st_component = self.infer_scale(image_list, scale)
         
     | 
| 165 | 
         
            +
                        st_component = F.interpolate(st_component, size=MT_size, mode="bilinear", align_corners=True)
         
     | 
| 166 | 
         
            +
                        ms_com.append(st_component)
         
     | 
| 167 | 
         
            +
                        image_list = [F.interpolate(img, scale_factor=self.scale_each_level, mode="bilinear") for img in image_list]
         
     | 
| 168 | 
         
            +
                    motion_energy = self.normalize(torch.cat(ms_com, dim=1))
         
     | 
| 169 | 
         
            +
                    # self.visualize_activation(motion_energy)
         
     | 
| 170 | 
         
            +
                    return motion_energy
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                def normalize(self, x):  # TODO
         
     | 
| 173 | 
         
            +
                    sum_activation = torch.mean(x, dim=[1], keepdim=True) + torch.square(self.norm_sigma)
         
     | 
| 174 | 
         
            +
                    x = self.norm_k.abs() * x / sum_activation
         
     | 
| 175 | 
         
            +
                    return x
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def _get_v1_order(self):
         
     | 
| 178 | 
         
            +
                    thetas = [gabor_scale.thetas for gabor_scale in self.spatial_filter]
         
     | 
| 179 | 
         
            +
                    fss = [gabor_scale.fs for gabor_scale in self.spatial_filter]
         
     | 
| 180 | 
         
            +
                    fts = [temporal_scale.ft for temporal_scale in self.temporal_filter]
         
     | 
| 181 | 
         
            +
                    scale_each_level = self.scale_each_level
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    scale_num = self.scale_num
         
     | 
| 184 | 
         
            +
                    neural_representation = []
         
     | 
| 185 | 
         
            +
                    index = 0
         
     | 
| 186 | 
         
            +
                    for scale_idx in range(len(thetas)):
         
     | 
| 187 | 
         
            +
                        theta_scale = thetas[scale_idx]
         
     | 
| 188 | 
         
            +
                        theta_scale = torch.sigmoid(theta_scale) * 2 * torch.pi  # spatial orientation constrain to 0-pi
         
     | 
| 189 | 
         
            +
                        fs_scale = fss[scale_idx]
         
     | 
| 190 | 
         
            +
                        fs_scale = torch.sigmoid(fs_scale) * 0.25
         
     | 
| 191 | 
         
            +
                        fs_scale = fs_scale * (scale_each_level ** scale_idx)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                        ft_scale = fts[scale_idx]
         
     | 
| 194 | 
         
            +
                        ft_scale = torch.sigmoid(ft_scale) * 0.25
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                        theta_scale = theta_scale.squeeze().cpu().detach().numpy()
         
     | 
| 197 | 
         
            +
                        fs_scale = fs_scale.squeeze().cpu().detach().numpy()
         
     | 
| 198 | 
         
            +
                        ft_scale = ft_scale.squeeze().cpu().detach().numpy()
         
     | 
| 199 | 
         
            +
                        for gabor_idx in range(len(theta_scale)):
         
     | 
| 200 | 
         
            +
                            speed = ft_scale[gabor_idx] / fs_scale[gabor_idx]
         
     | 
| 201 | 
         
            +
                            assert speed >= 0
         
     | 
| 202 | 
         
            +
                            angle = theta_scale[gabor_idx]
         
     | 
| 203 | 
         
            +
                            a = {"theta": -angle + np.pi, "fs": fs_scale[gabor_idx], "ft": ft_scale[gabor_idx], "speed": speed,
         
     | 
| 204 | 
         
            +
                                 "index": index}
         
     | 
| 205 | 
         
            +
                            index = index + 1
         
     | 
| 206 | 
         
            +
                            neural_representation.append(a)
         
     | 
| 207 | 
         
            +
                    return neural_representation
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                def visualize_activation(self, activation, if_log=True):
         
     | 
| 210 | 
         
            +
                    neural_representation = self._get_v1_order()
         
     | 
| 211 | 
         
            +
                    activation = activation[:, :, 14:-14, 14:-14]  # eliminate boundary
         
     | 
| 212 | 
         
            +
                    activation = torch.mean(activation, dim=[2, 3], keepdim=False)[0]
         
     | 
| 213 | 
         
            +
                    ax1 = plt.subplot(111, projection='polar')
         
     | 
| 214 | 
         
            +
                    theta_list = []
         
     | 
| 215 | 
         
            +
                    v_list = []
         
     | 
| 216 | 
         
            +
                    energy_list = []
         
     | 
| 217 | 
         
            +
                    for index in range(len(neural_representation)):
         
     | 
| 218 | 
         
            +
                        v = neural_representation[index]["speed"]
         
     | 
| 219 | 
         
            +
                        theta = neural_representation[index]["theta"]
         
     | 
| 220 | 
         
            +
                        location = neural_representation[index]["index"]
         
     | 
| 221 | 
         
            +
                        energy = activation.squeeze()[location].cpu().detach().numpy()
         
     | 
| 222 | 
         
            +
                        theta_list.append(theta)
         
     | 
| 223 | 
         
            +
                        v_list.append(v)
         
     | 
| 224 | 
         
            +
                        energy_list.append(energy)
         
     | 
| 225 | 
         
            +
                    v_list, theta_list, energy_list = np.array(v_list), np.array(theta_list), np.array(energy_list)
         
     | 
| 226 | 
         
            +
                    x, y = pol2cart(v_list, theta_list)
         
     | 
| 227 | 
         
            +
                    plt.scatter(theta_list, v_list, c=energy_list, cmap="rainbow", s=(energy_list + 20), alpha=0.5)
         
     | 
| 228 | 
         
            +
                    plt.axis('on')
         
     | 
| 229 | 
         
            +
                    if if_log:
         
     | 
| 230 | 
         
            +
                        ax1.set_rscale('symlog')
         
     | 
| 231 | 
         
            +
                    plt.colorbar()
         
     | 
| 232 | 
         
            +
                    energy_list = np.expand_dims(energy_list, 0).repeat(len(theta_list), 0)
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                    buf = BytesIO()
         
     | 
| 235 | 
         
            +
                    plt.savefig(buf, format='png')
         
     | 
| 236 | 
         
            +
                    buf.seek(0)
         
     | 
| 237 | 
         
            +
                    # read the buffer and convert to an image
         
     | 
| 238 | 
         
            +
                    image = imageio.imread(buf)
         
     | 
| 239 | 
         
            +
                    buf.close()
         
     | 
| 240 | 
         
            +
                    plt.close()
         
     | 
| 241 | 
         
            +
                    plt.clf()
         
     | 
| 242 | 
         
            +
                    return image
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                @staticmethod
         
     | 
| 246 | 
         
            +
                def demo():
         
     | 
| 247 | 
         
            +
                    input = [torch.ones(2, 1, 256, 256).cuda() for k in range(11)]
         
     | 
| 248 | 
         
            +
                    model = V1(spatial_num=16, scale_num=16, scale_factor=16, kernel_radius=7, num_ft=16,
         
     | 
| 249 | 
         
            +
                               kernel_size=6, average_time=True).cuda()
         
     | 
| 250 | 
         
            +
                    for i in range(100):
         
     | 
| 251 | 
         
            +
                        import time
         
     | 
| 252 | 
         
            +
                        start = time.time()
         
     | 
| 253 | 
         
            +
                        with autocast(enabled=True):
         
     | 
| 254 | 
         
            +
                            x = model(input)
         
     | 
| 255 | 
         
            +
                            print(x.shape)
         
     | 
| 256 | 
         
            +
                        torch.mean(x).backward()
         
     | 
| 257 | 
         
            +
                        end = time.time()
         
     | 
| 258 | 
         
            +
                        print(end - start)
         
     | 
| 259 | 
         
            +
                        print("#================================++#")
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                @property
         
     | 
| 262 | 
         
            +
                def num_after_st(self):
         
     | 
| 263 | 
         
            +
                    return self._num_after_st
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
            class TemporalFilter(nn.Module):
         
     | 
| 267 | 
         
            +
                def __init__(self, in_channels=1, num_ft=8, kernel_size=6, random=True):
         
     | 
| 268 | 
         
            +
                    # 40ms per time unit, 200ms -> 5+1 frames
         
     | 
| 269 | 
         
            +
                    # use exponential decay plus sin wave
         
     | 
| 270 | 
         
            +
                    super().__init__()
         
     | 
| 271 | 
         
            +
                    self.kernel_size = kernel_size
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                    def make_param(in_channels, values, requires_grad=True, dtype=None):
         
     | 
| 274 | 
         
            +
                        if dtype is None:
         
     | 
| 275 | 
         
            +
                            dtype = 'float32'
         
     | 
| 276 | 
         
            +
                        values = numpy.require(values, dtype=dtype)
         
     | 
| 277 | 
         
            +
                        n = in_channels * len(values)
         
     | 
| 278 | 
         
            +
                        data = torch.from_numpy(values).view(1, -1)
         
     | 
| 279 | 
         
            +
                        data = data.repeat(in_channels, 1)
         
     | 
| 280 | 
         
            +
                        return torch.nn.Parameter(data=data, requires_grad=requires_grad)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    indices = torch.arange(kernel_size, dtype=torch.float32)
         
     | 
| 283 | 
         
            +
                    self.register_buffer('indices', indices)
         
     | 
| 284 | 
         
            +
                    if random:
         
     | 
| 285 | 
         
            +
                        self.ft = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.01, 0.99, num_ft)),
         
     | 
| 286 | 
         
            +
                                             requires_grad=True)
         
     | 
| 287 | 
         
            +
                        self.tao = make_param(in_channels, values=numpy.arange(num_ft) / 2 + 1, requires_grad=True)
         
     | 
| 288 | 
         
            +
                    else: # evenly distributed
         
     | 
| 289 | 
         
            +
                        self.ft = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0.01, 0.99, num_ft)),
         
     | 
| 290 | 
         
            +
                                                requires_grad=True)
         
     | 
| 291 | 
         
            +
                        self.tao = make_param(in_channels, values=numpy.arange(num_ft) / 2 + 1, requires_grad=True)
         
     | 
| 292 | 
         
            +
                    self.feat_dim = num_ft
         
     | 
| 293 | 
         
            +
                    self.temporal_decay = 0.2
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                def make_temporal_filter(self):
         
     | 
| 296 | 
         
            +
                    fts = torch.sigmoid(self.ft) * 0.25
         
     | 
| 297 | 
         
            +
                    tao = torch.sigmoid(self.tao) * (-self.kernel_size / np.log(self.temporal_decay))
         
     | 
| 298 | 
         
            +
                    t = self.indices
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                    fts = fts.view(1, fts.shape[1], 1)
         
     | 
| 301 | 
         
            +
                    tao = tao.view(1, tao.shape[1], 1)
         
     | 
| 302 | 
         
            +
                    t = t.view(1, 1, t.shape[0])
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    temporal_sin = torch.exp(-t / tao) * torch.sin(2 * torch.pi * fts * t)
         
     | 
| 305 | 
         
            +
                    temporal_cos = torch.exp(-t / tao) * torch.cos(2 * torch.pi * fts * t)
         
     | 
| 306 | 
         
            +
                    temporal_sin = temporal_sin.view(-1, self.kernel_size)
         
     | 
| 307 | 
         
            +
                    temporal_cos = temporal_cos.view(-1, self.kernel_size)
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    temporal_sin = temporal_sin.view(self.feat_dim, 1, self.kernel_size)
         
     | 
| 310 | 
         
            +
                    temporal_cos = temporal_cos.view(self.feat_dim, 1, self.kernel_size)
         
     | 
| 311 | 
         
            +
                    # temporal_sin = torch.chunk(temporal_sin, dim=0, chunks=self._feat_dim)
         
     | 
| 312 | 
         
            +
                    # temporal_cos = torch.chunk(temporal_cos, dim=0, chunks=self._feat_dim)
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    return temporal_sin, temporal_cos  # 1,kz
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                def demo_temporal_filter(self, points=100):
         
     | 
| 317 | 
         
            +
                    fts = torch.sigmoid(self.ft) * 0.25
         
     | 
| 318 | 
         
            +
                    tao = torch.sigmoid(self.tao) * (-(self.kernel_size - 1) / np.log(self.temporal_decay))
         
     | 
| 319 | 
         
            +
                    t = torch.linspace(self.indices[0], self.indices[-1], steps=points)
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    fts = fts.view(1, fts.shape[1], 1)
         
     | 
| 322 | 
         
            +
                    tao = tao.view(1, tao.shape[1], 1)
         
     | 
| 323 | 
         
            +
                    t = t.view(1, 1, t.shape[0])
         
     | 
| 324 | 
         
            +
                    print("ft:" + str(fts))
         
     | 
| 325 | 
         
            +
                    print("tao:" + str(tao))
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    temporal_sin = torch.exp(-t / tao) * torch.sin(2 * torch.pi * fts * t)
         
     | 
| 328 | 
         
            +
                    temporal_cos = torch.exp(-t / tao) * torch.cos(2 * torch.pi * fts * t)
         
     | 
| 329 | 
         
            +
                    temporal_sin = temporal_sin.view(-1, points)
         
     | 
| 330 | 
         
            +
                    temporal_cos = temporal_cos.view(-1, points)
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                    temporal_sin = temporal_sin.view(self.feat_dim, 1, points)
         
     | 
| 333 | 
         
            +
                    temporal_cos = temporal_cos.view(self.feat_dim, 1, points)
         
     | 
| 334 | 
         
            +
                    # temporal_sin = torch.chunk(temporal_sin, dim=0, chunks=self._feat_dim)
         
     | 
| 335 | 
         
            +
                    # temporal_cos = torch.chunk(temporal_cos, dim=0, chunks=self._feat_dim)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    return temporal_sin, temporal_cos  # 1,kz
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                def forward(self, x_sin, x_cos):
         
     | 
| 340 | 
         
            +
                    in_channels = x_sin.size(1)
         
     | 
| 341 | 
         
            +
                    n = x_sin.size(2)
         
     | 
| 342 | 
         
            +
                    # batch, c, sequence
         
     | 
| 343 | 
         
            +
                    me = []
         
     | 
| 344 | 
         
            +
                    t_sin, t_cos = self.make_temporal_filter()
         
     | 
| 345 | 
         
            +
                    for n_t in range(self.feat_dim):
         
     | 
| 346 | 
         
            +
                        k_sin = t_sin[n_t, ...].expand(in_channels, -1, -1)
         
     | 
| 347 | 
         
            +
                        k_cos = t_cos[n_t, ...].expand(in_channels, -1, -1)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                        a = F.conv1d(x_sin, weight=k_cos, padding="same", groups=in_channels, bias=None)
         
     | 
| 350 | 
         
            +
                        b = F.conv1d(x_cos, weight=k_sin, padding="same", groups=in_channels, bias=None)
         
     | 
| 351 | 
         
            +
                        g_o = a + b
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                        a = F.conv1d(x_sin, weight=k_sin, padding="same", groups=in_channels, bias=None)
         
     | 
| 354 | 
         
            +
                        b = F.conv1d(x_cos, weight=k_cos, padding="same", groups=in_channels, bias=None)
         
     | 
| 355 | 
         
            +
                        g_e = a - b
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                        energy_component = g_o ** 2 + g_e ** 2
         
     | 
| 358 | 
         
            +
                        me.append(energy_component)
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    return me
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
            class GaborFilters(nn.Module):
         
     | 
| 364 | 
         
            +
                def __init__(self,
         
     | 
| 365 | 
         
            +
                             in_channels=1,
         
     | 
| 366 | 
         
            +
                             kernel_radius=7,
         
     | 
| 367 | 
         
            +
                             num_units=512,
         
     | 
| 368 | 
         
            +
                             random=True
         
     | 
| 369 | 
         
            +
                             ):
         
     | 
| 370 | 
         
            +
                    # the total number of or units for each scale
         
     | 
| 371 | 
         
            +
                    super().__init__()
         
     | 
| 372 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 373 | 
         
            +
                    kernel_size = kernel_radius * 2 + 1
         
     | 
| 374 | 
         
            +
                    self.kernel_size = kernel_size
         
     | 
| 375 | 
         
            +
                    self.kernel_radius = kernel_radius
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
                    def make_param(in_channels, values, requires_grad=True, dtype=None):
         
     | 
| 378 | 
         
            +
                        if dtype is None:
         
     | 
| 379 | 
         
            +
                            dtype = 'float32'
         
     | 
| 380 | 
         
            +
                        values = numpy.require(values, dtype=dtype)
         
     | 
| 381 | 
         
            +
                        n = in_channels * len(values)
         
     | 
| 382 | 
         
            +
                        data = torch.from_numpy(values).view(1, -1)
         
     | 
| 383 | 
         
            +
                        data = data.repeat(in_channels, 1)
         
     | 
| 384 | 
         
            +
                        return torch.nn.Parameter(data=data, requires_grad=requires_grad)
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                    # build all learnable parameters
         
     | 
| 387 | 
         
            +
                    # random distribution
         
     | 
| 388 | 
         
            +
                    if random:
         
     | 
| 389 | 
         
            +
                        self.sigmas = make_param(in_channels, inverse_sigmoid(np.random.uniform(0.8, 0.99, num_units)))
         
     | 
| 390 | 
         
            +
                        self.fs = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.2, 0.8, num_units)))
         
     | 
| 391 | 
         
            +
                        # maximun is 0.25 cycle/frame
         
     | 
| 392 | 
         
            +
                        self.gammas = make_param(in_channels, numpy.ones(num_units))  # TODO: fix gamma or not
         
     | 
| 393 | 
         
            +
                        self.psis = make_param(in_channels, np.zeros(num_units), requires_grad=False)  # fix phase
         
     | 
| 394 | 
         
            +
                        self.thetas = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.01, 0.99, num_units)),
         
     | 
| 395 | 
         
            +
                                                 requires_grad=True)
         
     | 
| 396 | 
         
            +
                    else:  # evenly distribution
         
     | 
| 397 | 
         
            +
                        self.sigmas = make_param(in_channels, inverse_sigmoid(np.linspace(0.8, 0.99, num_units)))
         
     | 
| 398 | 
         
            +
                        self.fs = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0.01, 0.99, num_units)))
         
     | 
| 399 | 
         
            +
                        # maximun is 0.25 cycle/frame
         
     | 
| 400 | 
         
            +
                        self.gammas = make_param(in_channels, numpy.ones(num_units))  # TODO: fix gamma or not
         
     | 
| 401 | 
         
            +
                        self.psis = make_param(in_channels, np.zeros(num_units), requires_grad=False)  # fix phase
         
     | 
| 402 | 
         
            +
                        self.thetas = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0, 1, num_units)),
         
     | 
| 403 | 
         
            +
                                                 requires_grad=True)
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    indices = torch.arange(kernel_size, dtype=torch.float32) - (kernel_size - 1) / 2
         
     | 
| 406 | 
         
            +
                    self.register_buffer('indices', indices)
         
     | 
| 407 | 
         
            +
                    self.spatial_decay = 0.5
         
     | 
| 408 | 
         
            +
                    # number of channels after the conv
         
     | 
| 409 | 
         
            +
                    self.n_channels_post_conv = num_units
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                def make_gabor_filters(self, quadrature=True):
         
     | 
| 412 | 
         
            +
                    sigmas = torch.sigmoid(self.sigmas) * np.sqrt(
         
     | 
| 413 | 
         
            +
                        (self.kernel_radius - 1) ** 2 * 0.5 / np.log(
         
     | 
| 414 | 
         
            +
                            1 / self.spatial_decay))  # std of gauss win decay to 0.2 by log(0.2)
         
     | 
| 415 | 
         
            +
                    fs = torch.sigmoid(self.fs) * 0.25
         
     | 
| 416 | 
         
            +
                    # frequency of cos and sine wave keep positive, must > 2 to avoid aliasing
         
     | 
| 417 | 
         
            +
                    gammas = torch.abs(self.gammas)  # shape of gauss win, set as 1 by default
         
     | 
| 418 | 
         
            +
                    psis = self.psis  # phase of cos wave
         
     | 
| 419 | 
         
            +
                    thetas = torch.sigmoid(self.thetas) * 2 * torch.pi  # spatial orientation constrain to 0-2pi
         
     | 
| 420 | 
         
            +
                    y = self.indices
         
     | 
| 421 | 
         
            +
                    x = self.indices
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                    in_channels = sigmas.shape[0]
         
     | 
| 424 | 
         
            +
                    assert in_channels == fs.shape[0]
         
     | 
| 425 | 
         
            +
                    assert in_channels == gammas.shape[0]
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    kernel_size = y.shape[0], x.shape[0]
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    sigmas = sigmas.view(in_channels, sigmas.shape[1], 1, 1)
         
     | 
| 430 | 
         
            +
                    fs = fs.view(in_channels, fs.shape[1], 1, 1)
         
     | 
| 431 | 
         
            +
                    gammas = gammas.view(in_channels, gammas.shape[1], 1, 1)
         
     | 
| 432 | 
         
            +
                    psis = psis.view(in_channels, psis.shape[1], 1, 1)
         
     | 
| 433 | 
         
            +
                    thetas = thetas.view(in_channels, thetas.shape[1], 1, 1)
         
     | 
| 434 | 
         
            +
                    y = y.view(1, 1, y.shape[0], 1)
         
     | 
| 435 | 
         
            +
                    x = x.view(1, 1, 1, x.shape[0])
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                    sigma_x = sigmas
         
     | 
| 438 | 
         
            +
                    sigma_y = sigmas / gammas
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                    sin_t = torch.sin(thetas)
         
     | 
| 441 | 
         
            +
                    cos_t = torch.cos(thetas)
         
     | 
| 442 | 
         
            +
                    y_theta = -x * sin_t + y * cos_t
         
     | 
| 443 | 
         
            +
                    x_theta = x * cos_t + y * sin_t
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    if quadrature:
         
     | 
| 446 | 
         
            +
                        gb_cos = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 447 | 
         
            +
                                 * torch.cos(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 448 | 
         
            +
                        gb_sin = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 449 | 
         
            +
                                 * torch.sin(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 450 | 
         
            +
                        gb_cos = gb_cos.reshape(-1, 1, kernel_size[0], kernel_size[1])
         
     | 
| 451 | 
         
            +
                        gb_sin = gb_sin.reshape(-1, 1, kernel_size[0], kernel_size[1])
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                        # remove DC
         
     | 
| 454 | 
         
            +
                        gb_cos = gb_cos - torch.sum(gb_cos, dim=[-1, -2], keepdim=True) / (kernel_size[0] * kernel_size[1])
         
     | 
| 455 | 
         
            +
                        gb_sin = gb_sin - torch.sum(gb_sin, dim=[-1, -2], keepdim=True) / (kernel_size[0] * kernel_size[1])
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                        return gb_sin, gb_cos
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                    else:
         
     | 
| 460 | 
         
            +
                        gb = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 461 | 
         
            +
                             * torch.cos(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                        gb = gb.view(-1, kernel_size[0], kernel_size[1])
         
     | 
| 464 | 
         
            +
                        return gb
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                def forward(self, x):
         
     | 
| 467 | 
         
            +
                    batch_size = x.size(0)
         
     | 
| 468 | 
         
            +
                    sy = x.size(2)
         
     | 
| 469 | 
         
            +
                    sx = x.size(3)
         
     | 
| 470 | 
         
            +
                    gb_sin, gb_cos = self.make_gabor_filters(quadrature=True)
         
     | 
| 471 | 
         
            +
                    assert gb_sin.shape[0] == self.n_channels_post_conv
         
     | 
| 472 | 
         
            +
                    assert gb_sin.shape[2] == self.kernel_size
         
     | 
| 473 | 
         
            +
                    assert gb_sin.shape[3] == self.kernel_size
         
     | 
| 474 | 
         
            +
                    gb_sin = gb_sin.view(self.n_channels_post_conv, 1, self.kernel_size, self.kernel_size)
         
     | 
| 475 | 
         
            +
                    gb_cos = gb_cos.view(self.n_channels_post_conv, 1, self.kernel_size, self.kernel_size)
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
                    # flip ke
         
     | 
| 478 | 
         
            +
                    gb_sin = torch.flip(gb_sin, dims=[-1, -2])
         
     | 
| 479 | 
         
            +
                    gb_cos = torch.flip(gb_cos, dims=[-1, -2])
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                    res_sin = F.conv2d(input=x, weight=gb_sin,
         
     | 
| 482 | 
         
            +
                                       padding=self.kernel_radius, groups=self.in_channels)
         
     | 
| 483 | 
         
            +
                    res_cos = F.conv2d(input=x, weight=gb_cos,
         
     | 
| 484 | 
         
            +
                                       padding=self.kernel_radius, groups=self.in_channels)
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    if self.rotation_invariant:
         
     | 
| 487 | 
         
            +
                        res_sin = res_sin.view(batch_size, self.in_channels, -1, self.n_thetas, sy, sx)
         
     | 
| 488 | 
         
            +
                        res_sin, _ = res_sin.max(dim=3)
         
     | 
| 489 | 
         
            +
                        res_cos = res_cos.view(batch_size, self.in_channels, -1, self.n_thetas, sy, sx)
         
     | 
| 490 | 
         
            +
                        res_cos, _ = res_cos.max(dim=3)
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                    res_sin = res_sin.view(batch_size, -1, sy, sx)
         
     | 
| 493 | 
         
            +
                    res_cos = res_cos.view(batch_size, -1, sy, sx)
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    return res_sin, res_cos
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                def demo_gabor_filters(self, quadrature=True, points=100):
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    sigmas = torch.sigmoid(self.sigmas) * np.sqrt(
         
     | 
| 500 | 
         
            +
                        (self.kernel_radius - 1) ** 2 * 0.5 / np.log(
         
     | 
| 501 | 
         
            +
                            1 / self.spatial_decay))  # std of gauss win decay to 0.2 by log(0.2)
         
     | 
| 502 | 
         
            +
                    fs = torch.sigmoid(self.fs) * 0.25
         
     | 
| 503 | 
         
            +
                    # frequency of cos and sine wave keep positive, must > 2 to avoid aliasing
         
     | 
| 504 | 
         
            +
                    gammas = torch.abs(self.gammas)  # shape of gauss win, set as 1 by default
         
     | 
| 505 | 
         
            +
                    thetas = torch.sigmoid(self.thetas) * 2 * torch.pi  # spatial orientation constrain to 0-2pi
         
     | 
| 506 | 
         
            +
                    psis = self.psis  # phase of cos wave
         
     | 
| 507 | 
         
            +
                    print("theta:" + str(thetas))
         
     | 
| 508 | 
         
            +
                    print("fs:" + str(fs))
         
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
                    x = torch.linspace(self.indices[0], self.indices[-1], points)
         
     | 
| 511 | 
         
            +
                    y = torch.linspace(self.indices[0], self.indices[-1], points)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    in_channels = sigmas.shape[0]
         
     | 
| 514 | 
         
            +
                    assert in_channels == fs.shape[0]
         
     | 
| 515 | 
         
            +
                    assert in_channels == gammas.shape[0]
         
     | 
| 516 | 
         
            +
                    kernel_size = y.shape[0], x.shape[0]
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    sigmas = sigmas.view(in_channels, sigmas.shape[1], 1, 1)
         
     | 
| 519 | 
         
            +
                    fs = fs.view(in_channels, fs.shape[1], 1, 1)
         
     | 
| 520 | 
         
            +
                    gammas = gammas.view(in_channels, gammas.shape[1], 1, 1)
         
     | 
| 521 | 
         
            +
                    psis = psis.view(in_channels, psis.shape[1], 1, 1)
         
     | 
| 522 | 
         
            +
                    thetas = thetas.view(in_channels, thetas.shape[1], 1, 1)
         
     | 
| 523 | 
         
            +
                    y = y.view(1, 1, y.shape[0], 1)
         
     | 
| 524 | 
         
            +
                    x = x.view(1, 1, 1, x.shape[0])
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                    sigma_x = sigmas
         
     | 
| 527 | 
         
            +
                    sigma_y = sigmas / gammas
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    sin_t = torch.sin(thetas)
         
     | 
| 530 | 
         
            +
                    cos_t = torch.cos(thetas)
         
     | 
| 531 | 
         
            +
                    y_theta = -x * sin_t + y * cos_t
         
     | 
| 532 | 
         
            +
                    x_theta = x * cos_t + y * sin_t
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    if quadrature:
         
     | 
| 535 | 
         
            +
                        gb_cos = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 536 | 
         
            +
                                 * torch.cos(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 537 | 
         
            +
                        gb_sin = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 538 | 
         
            +
                                 * torch.sin(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 539 | 
         
            +
                        gb_cos = gb_cos.reshape(-1, 1, points, points)
         
     | 
| 540 | 
         
            +
                        gb_sin = gb_sin.reshape(-1, 1, points, points)
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                        # remove DC
         
     | 
| 543 | 
         
            +
                        gb_cos = gb_cos - torch.sum(gb_cos, dim=[-1, -2], keepdim=True) / (points * points)
         
     | 
| 544 | 
         
            +
                        gb_sin = gb_sin - torch.sum(gb_sin, dim=[-1, -2], keepdim=True) / (points * points)
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                        return gb_sin, gb_cos
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                    else:
         
     | 
| 549 | 
         
            +
                        gb = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
         
     | 
| 550 | 
         
            +
                             * torch.cos(2.0 * math.pi * x_theta * fs + psis)
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                        gb = gb.view(-1, kernel_size[0], kernel_size[1])
         
     | 
| 553 | 
         
            +
                        return gb
         
     | 
| 554 | 
         
            +
             
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
            def te_gabor_(num_units=48):
         
     | 
| 557 | 
         
            +
                s_point = 100
         
     | 
| 558 | 
         
            +
                s_kz = 7
         
     | 
| 559 | 
         
            +
                gb_sin, gb_cos = GaborFilters(num_units=num_units, kernel_radius=s_kz).demo_gabor_filters(points=s_point)
         
     | 
| 560 | 
         
            +
                gb = gb_sin ** 2 + gb_cos ** 2
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                print(gb_sin.shape)
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                for c in range(gb_sin.size(0)):
         
     | 
| 565 | 
         
            +
                    plt.subplot(1, 3, 1)
         
     | 
| 566 | 
         
            +
                    curve = gb_cos[c].detach().cpu().squeeze().numpy()
         
     | 
| 567 | 
         
            +
                    plt.imshow(curve)
         
     | 
| 568 | 
         
            +
                    plt.subplot(1, 3, 2)
         
     | 
| 569 | 
         
            +
                    curve = gb_sin[c].detach().cpu().squeeze().numpy()
         
     | 
| 570 | 
         
            +
                    plt.imshow(curve)
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    plt.subplot(1, 3, 3)
         
     | 
| 573 | 
         
            +
                    curve = gb[c].detach().cpu().squeeze().numpy()
         
     | 
| 574 | 
         
            +
                    plt.imshow(curve)
         
     | 
| 575 | 
         
            +
                    plt.show()
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
            def te_spatial_temporal():
         
     | 
| 579 | 
         
            +
                t_point = 6 * 100
         
     | 
| 580 | 
         
            +
                s_point = 14 * 100
         
     | 
| 581 | 
         
            +
                s_kz = 7
         
     | 
| 582 | 
         
            +
                t_kz = 6
         
     | 
| 583 | 
         
            +
                filenames = []
         
     | 
| 584 | 
         
            +
                gb_sin_b, gb_cos_b = GaborFilters(num_units=48, kernel_radius=s_kz).demo_gabor_filters(points=s_point)
         
     | 
| 585 | 
         
            +
                temporal = TemporalFilter(num_ft=2, kernel_size=t_kz)
         
     | 
| 586 | 
         
            +
                t_sin, t_cos = temporal.demo_temporal_filter(points=t_point)
         
     | 
| 587 | 
         
            +
                x = np.linspace(0, t_kz, t_point)
         
     | 
| 588 | 
         
            +
                index = 0
         
     | 
| 589 | 
         
            +
                for i in range(gb_sin_b.size(0)):
         
     | 
| 590 | 
         
            +
                    for j in range(t_sin.size(0)):
         
     | 
| 591 | 
         
            +
                        plt.figure(figsize=(14, 9), dpi=80)
         
     | 
| 592 | 
         
            +
                        plt.subplot(2, 3, 1)
         
     | 
| 593 | 
         
            +
                        curve = gb_sin_b[i].squeeze().detach().numpy()
         
     | 
| 594 | 
         
            +
                        plt.imshow(curve)
         
     | 
| 595 | 
         
            +
                        plt.title("Gabor Sin")
         
     | 
| 596 | 
         
            +
                        plt.subplot(2, 3, 2)
         
     | 
| 597 | 
         
            +
                        curve = gb_cos_b[i].squeeze().detach().numpy()
         
     | 
| 598 | 
         
            +
                        plt.imshow(curve)
         
     | 
| 599 | 
         
            +
                        plt.title("Gabor Cos")
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                        plt.subplot(2, 3, 3)
         
     | 
| 602 | 
         
            +
                        curve = t_sin[j].squeeze().detach().numpy()
         
     | 
| 603 | 
         
            +
                        plt.plot(x, curve, label='sin')
         
     | 
| 604 | 
         
            +
                        plt.title("Temporal Sin")
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                        curve = t_cos[j].squeeze().detach().numpy()
         
     | 
| 607 | 
         
            +
                        plt.plot(x, curve, label='cos')
         
     | 
| 608 | 
         
            +
                        plt.xlabel('Time (s)')
         
     | 
| 609 | 
         
            +
                        plt.ylabel('Response to pulse at t=0')
         
     | 
| 610 | 
         
            +
                        plt.legend()
         
     | 
| 611 | 
         
            +
                        plt.title("Temporal filter")
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                        gb_sin = gb_sin_b[i].squeeze().detach()[5, :]
         
     | 
| 614 | 
         
            +
                        gb_cos = gb_cos_b[i].squeeze().detach()[5, :]
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                        a = np.outer(t_cos[j].detach(), gb_sin)
         
     | 
| 617 | 
         
            +
                        b = np.outer(t_sin[j].detach(), gb_cos)
         
     | 
| 618 | 
         
            +
                        g_o = a + b
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                        a = np.outer(t_sin[j].detach(), gb_sin)
         
     | 
| 621 | 
         
            +
                        b = np.outer(t_cos[j].detach(), gb_cos)
         
     | 
| 622 | 
         
            +
                        g_e = a - b
         
     | 
| 623 | 
         
            +
                        energy_component = g_o ** 2 + g_e ** 2
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
                        plt.subplot(2, 3, 4)
         
     | 
| 626 | 
         
            +
                        curve = g_o
         
     | 
| 627 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 628 | 
         
            +
                        plt.title("Spatial Temporal even")
         
     | 
| 629 | 
         
            +
                        plt.subplot(2, 3, 5)
         
     | 
| 630 | 
         
            +
                        curve = g_e
         
     | 
| 631 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 632 | 
         
            +
                        plt.title("Spatial Temporal odd")
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                        plt.subplot(2, 3, 6)
         
     | 
| 635 | 
         
            +
                        curve = energy_component
         
     | 
| 636 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 637 | 
         
            +
                        plt.title("energy")
         
     | 
| 638 | 
         
            +
                        plt.savefig('filter_%d.png' % (index))
         
     | 
| 639 | 
         
            +
                        filenames.append('filter_%d.png' % (index))
         
     | 
| 640 | 
         
            +
                        index += 1
         
     | 
| 641 | 
         
            +
                        plt.show()
         
     | 
| 642 | 
         
            +
                # build gif
         
     | 
| 643 | 
         
            +
                with imageio.get_writer('filters_orientation.gif', mode='I') as writer:
         
     | 
| 644 | 
         
            +
                    for filename in filenames:
         
     | 
| 645 | 
         
            +
                        image = imageio.imread(filename)
         
     | 
| 646 | 
         
            +
                        writer.append_data(image)
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                # Remove files
         
     | 
| 649 | 
         
            +
                for filename in set(filenames):
         
     | 
| 650 | 
         
            +
                    os.remove(filename)
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
            def te_temporal_():
         
     | 
| 654 | 
         
            +
                k_size = 6
         
     | 
| 655 | 
         
            +
                temporal = TemporalFilter(n_tao=2, num_ft=8, kernel_size=k_size)
         
     | 
| 656 | 
         
            +
                sin, cos = temporal.demo_temporal_filter()
         
     | 
| 657 | 
         
            +
                print(sin.shape)
         
     | 
| 658 | 
         
            +
                x = np.linspace(0, k_size, k_size * 100)
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
                # plot temporal filters to illustrate what they look like.
         
     | 
| 661 | 
         
            +
                for c in range(sin.size(0)):
         
     | 
| 662 | 
         
            +
                    curve = cos[c].detach().cpu().squeeze().numpy()
         
     | 
| 663 | 
         
            +
                    plt.plot(x, curve, label='cos')
         
     | 
| 664 | 
         
            +
                    curve = sin[c].detach().cpu().squeeze().numpy()
         
     | 
| 665 | 
         
            +
                    plt.plot(x, curve, label='sin')
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                    plt.xlabel('Time (s)')
         
     | 
| 668 | 
         
            +
                    plt.ylabel('Response to pulse at t=0')
         
     | 
| 669 | 
         
            +
                    plt.legend()
         
     | 
| 670 | 
         
            +
                    plt.show()
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
             
     | 
| 673 | 
         
            +
            def circular_hist(ax, x, bins=16, density=True, offset=0, gaps=True):
         
     | 
| 674 | 
         
            +
                """
         
     | 
| 675 | 
         
            +
                Produce a circular histogram of angles on ax.
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                Parameters
         
     | 
| 678 | 
         
            +
                ----------
         
     | 
| 679 | 
         
            +
                ax : matplotlib.axes._subplots.PolarAxesSubplot
         
     | 
| 680 | 
         
            +
                    axis instance created with subplot_kw=dict(projection='polar').
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                x : array
         
     | 
| 683 | 
         
            +
                    Angles to plot, expected in units of radians.
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
                bins : int, optional
         
     | 
| 686 | 
         
            +
                    Defines the number of equal-width bins in the range. The default is 16.
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
                density : bool, optional
         
     | 
| 689 | 
         
            +
                    If True plot frequency proportional to area. If False plot frequency
         
     | 
| 690 | 
         
            +
                    proportional to radius. The default is True.
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                offset : float, optional
         
     | 
| 693 | 
         
            +
                    Sets the offset for the location of the 0 direction in units of
         
     | 
| 694 | 
         
            +
                    radians. The default is 0.
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                gaps : bool, optional
         
     | 
| 697 | 
         
            +
                    Whether to allow gaps between bins. When gaps = False the bins are
         
     | 
| 698 | 
         
            +
                    forced to partition the entire [-pi, pi] range. The default is True.
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                Returns
         
     | 
| 701 | 
         
            +
                -------
         
     | 
| 702 | 
         
            +
                n : array or list of arrays
         
     | 
| 703 | 
         
            +
                    The number of values in each bin.
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                bins : array
         
     | 
| 706 | 
         
            +
                    The edges of the bins.
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                patches : `.BarContainer` or list of a single `.Polygon`
         
     | 
| 709 | 
         
            +
                    Container of individual artists used to create the histogram
         
     | 
| 710 | 
         
            +
                    or list of such containers if there are multiple input datasets.
         
     | 
| 711 | 
         
            +
                """
         
     | 
| 712 | 
         
            +
                # Wrap angles to [-pi, pi)
         
     | 
| 713 | 
         
            +
                x = (x + np.pi) % (2 * np.pi) - np.pi
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                # Force bins to partition entire circle
         
     | 
| 716 | 
         
            +
                if not gaps:
         
     | 
| 717 | 
         
            +
                    bins = np.linspace(-np.pi, np.pi, num=bins + 1)
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                # Bin data and record counts
         
     | 
| 720 | 
         
            +
                n, bins = np.histogram(x, bins=bins)
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                # Compute width of each bin
         
     | 
| 723 | 
         
            +
                widths = np.diff(bins)
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                # By default plot frequency proportional to area
         
     | 
| 726 | 
         
            +
                if density:
         
     | 
| 727 | 
         
            +
                    # Area to assign each bin
         
     | 
| 728 | 
         
            +
                    area = n / x.size
         
     | 
| 729 | 
         
            +
                    # Calculate corresponding bin radius
         
     | 
| 730 | 
         
            +
                    radius = (area / np.pi) ** .5
         
     | 
| 731 | 
         
            +
                # Otherwise plot frequency proportional to radius
         
     | 
| 732 | 
         
            +
                else:
         
     | 
| 733 | 
         
            +
                    radius = n
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                # Plot data on ax
         
     | 
| 736 | 
         
            +
                patches = ax.bar(bins[:-1], radius, zorder=1, align='edge', width=widths,
         
     | 
| 737 | 
         
            +
                                 edgecolor='C0', fill=False, linewidth=1)
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
                # Set the direction of the zero angle
         
     | 
| 740 | 
         
            +
                ax.set_theta_offset(offset)
         
     | 
| 741 | 
         
            +
             
     | 
| 742 | 
         
            +
                # Remove ylabels for area plots (they are mostly obstructive)
         
     | 
| 743 | 
         
            +
                if density:
         
     | 
| 744 | 
         
            +
                    ax.set_yticks([])
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
                return n, bins, patches
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
            def show_trained_model(file_name="/home/2TSSD/experiment/FFMEDNN/Sintel_fixv1_10.62_ckpt.pth.tar"):
         
     | 
| 750 | 
         
            +
                import utils.torch_utils as utils
         
     | 
| 751 | 
         
            +
                from model.fle_version_2_3.FFV1MT_MS import FFV1DNN
         
     | 
| 752 | 
         
            +
                model = FFV1DNN(num_scales=8,
         
     | 
| 753 | 
         
            +
                                num_cells=256,
         
     | 
| 754 | 
         
            +
                                upsample_factor=8,
         
     | 
| 755 | 
         
            +
                                feature_channels=256,
         
     | 
| 756 | 
         
            +
                                scale_factor=16,
         
     | 
| 757 | 
         
            +
                                num_layers=6)
         
     | 
| 758 | 
         
            +
                # model = utils.restore_model(model, file_name)
         
     | 
| 759 | 
         
            +
                model = model.ffv1
         
     | 
| 760 | 
         
            +
                t_point = 100
         
     | 
| 761 | 
         
            +
                s_point = 100
         
     | 
| 762 | 
         
            +
                t_kz = 6
         
     | 
| 763 | 
         
            +
                filenames = []
         
     | 
| 764 | 
         
            +
                x = np.arange(0, 6) * 40
         
     | 
| 765 | 
         
            +
                x = np.repeat(x[None], axis=0, repeats=256)
         
     | 
| 766 | 
         
            +
                temporal = model.temporal_pooling.data.cpu().squeeze().numpy()
         
     | 
| 767 | 
         
            +
                mean = np.mean(temporal, axis=0)
         
     | 
| 768 | 
         
            +
                plt.figure(figsize=(10, 10))
         
     | 
| 769 | 
         
            +
                plt.subplot(2, 1, 1)
         
     | 
| 770 | 
         
            +
                for idx in range(0, 256):
         
     | 
| 771 | 
         
            +
                    plt.plot(x[idx], temporal[idx])
         
     | 
| 772 | 
         
            +
                plt.subplot(2, 1, 2)
         
     | 
| 773 | 
         
            +
                plt.plot(x[0], mean, label="mean")
         
     | 
| 774 | 
         
            +
             
     | 
| 775 | 
         
            +
                plt.xlabel("times (ms)")
         
     | 
| 776 | 
         
            +
                plt.ylabel("temporal pooling weight")
         
     | 
| 777 | 
         
            +
                plt.legend()
         
     | 
| 778 | 
         
            +
                plt.grid(True)
         
     | 
| 779 | 
         
            +
                plt.show()
         
     | 
| 780 | 
         
            +
                neural_representation = model._get_v1_order()
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                fs = np.array([ne["fs"] for ne in neural_representation])
         
     | 
| 783 | 
         
            +
                ft = np.array([ne["ft"] for ne in neural_representation])
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                ax1 = plt.subplot(131, projection='polar')
         
     | 
| 786 | 
         
            +
                theta_list = []
         
     | 
| 787 | 
         
            +
                v_list = []
         
     | 
| 788 | 
         
            +
                energy_list = []
         
     | 
| 789 | 
         
            +
                for index in range(len(neural_representation)):
         
     | 
| 790 | 
         
            +
                    v = neural_representation[index]["speed"]
         
     | 
| 791 | 
         
            +
                    theta = neural_representation[index]["theta"]
         
     | 
| 792 | 
         
            +
                    theta_list.append(theta)
         
     | 
| 793 | 
         
            +
                    v_list.append(v)
         
     | 
| 794 | 
         
            +
             
     | 
| 795 | 
         
            +
                v_list, theta_list = np.array(v_list), np.array(theta_list)
         
     | 
| 796 | 
         
            +
                x, y = pol2cart(v_list, theta_list)
         
     | 
| 797 | 
         
            +
                plt.scatter(theta_list, v_list, c=v_list, cmap="rainbow", s=(v_list + 20), alpha=0.8)
         
     | 
| 798 | 
         
            +
                plt.axis('on')
         
     | 
| 799 | 
         
            +
                # plt.colorbar()
         
     | 
| 800 | 
         
            +
                plt.grid(True)
         
     | 
| 801 | 
         
            +
                # plt.subplot(132, projection="polar")
         
     | 
| 802 | 
         
            +
                # plt.scatter(theta_list, np.ones_like(theta_list))
         
     | 
| 803 | 
         
            +
                plt.subplot(132, projection='polar')
         
     | 
| 804 | 
         
            +
                plt.scatter(theta_list, np.ones_like(v_list))
         
     | 
| 805 | 
         
            +
                lst = []
         
     | 
| 806 | 
         
            +
                for scale in range(8):
         
     | 
| 807 | 
         
            +
                    lst += ["scale %d" % scale] * 32
         
     | 
| 808 | 
         
            +
                data = {"Spatial Frequency": fs, 'Temporal Frequency': ft, "Class": lst}
         
     | 
| 809 | 
         
            +
                df = pd.DataFrame(data=data)
         
     | 
| 810 | 
         
            +
                ax = plt.subplot(133, projection='polar')
         
     | 
| 811 | 
         
            +
                # theta_list = theta_list[v_list > (ft * v_list.mean())]
         
     | 
| 812 | 
         
            +
                print(len(theta_list))
         
     | 
| 813 | 
         
            +
                bins_number = 8  # the [0, 360) interval will be subdivided into this
         
     | 
| 814 | 
         
            +
                # number of equal bins
         
     | 
| 815 | 
         
            +
                zone = np.pi / 8
         
     | 
| 816 | 
         
            +
                theta_list[theta_list < (-np.pi + zone)] = theta_list[theta_list < (-np.pi + zone)] + np.pi * 2
         
     | 
| 817 | 
         
            +
                bins = np.linspace(-np.pi + zone, np.pi + zone, bins_number + 1)
         
     | 
| 818 | 
         
            +
                n, _, _ = plt.hist(theta_list, bins, edgecolor="black")
         
     | 
| 819 | 
         
            +
                # ax.set_theta_offset(-np.pi / 8 - np.pi)
         
     | 
| 820 | 
         
            +
                ax.set_yticklabels([])
         
     | 
| 821 | 
         
            +
                plt.grid(True)
         
     | 
| 822 | 
         
            +
                import seaborn as sns
         
     | 
| 823 | 
         
            +
                sns.jointplot(data=df, x="Spatial Frequency", y="Temporal Frequency", hue="Class", xlim=[0, 0.3], ylim=[0, 0.3])
         
     | 
| 824 | 
         
            +
                plt.grid(True)
         
     | 
| 825 | 
         
            +
                g = sns.jointplot(data=df, x="Spatial Frequency", y="Temporal Frequency", xlim=[0, 0.25], ylim=[0, 0.25])
         
     | 
| 826 | 
         
            +
                # g.plot_joint(sns.kdeplot, color="r", zorder=0, levels=6)
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                plt.grid(True)
         
     | 
| 829 | 
         
            +
                plt.show()
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
                # show spatial frequency preference and temporal frequency preference.
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                x = np.linspace(0, t_kz, t_point)
         
     | 
| 834 | 
         
            +
                index = 0
         
     | 
| 835 | 
         
            +
                for scale in range(len(model.spatial_filter)):
         
     | 
| 836 | 
         
            +
                    t_sin, t_cos = model.temporal_filter[scale].demo_temporal_filter(points=t_point)
         
     | 
| 837 | 
         
            +
                    gb_sin_b, gb_cos_b = model.spatial_filter[scale].demo_gabor_filters(points=s_point)
         
     | 
| 838 | 
         
            +
                    for i in range(gb_sin_b.size(0)):
         
     | 
| 839 | 
         
            +
                        plt.figure(figsize=(14, 9), dpi=80)
         
     | 
| 840 | 
         
            +
                        plt.subplot(2, 3, 1)
         
     | 
| 841 | 
         
            +
                        curve = gb_sin_b[i].squeeze().detach().numpy()
         
     | 
| 842 | 
         
            +
                        plt.imshow(curve)
         
     | 
| 843 | 
         
            +
                        plt.title("Gabor Sin")
         
     | 
| 844 | 
         
            +
                        plt.subplot(2, 3, 2)
         
     | 
| 845 | 
         
            +
                        curve = gb_cos_b[i].squeeze().detach().numpy()
         
     | 
| 846 | 
         
            +
                        plt.imshow(curve)
         
     | 
| 847 | 
         
            +
                        plt.title("Gabor Cos")
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                        plt.subplot(2, 3, 3)
         
     | 
| 850 | 
         
            +
                        curve = t_sin[i].squeeze().detach().numpy()
         
     | 
| 851 | 
         
            +
                        plt.plot(x, curve, label='sin')
         
     | 
| 852 | 
         
            +
                        plt.title("Temporal Sin")
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                        curve = t_cos[i].squeeze().detach().numpy()
         
     | 
| 855 | 
         
            +
                        plt.plot(x, curve, label='cos')
         
     | 
| 856 | 
         
            +
                        plt.xlabel('Time (s)')
         
     | 
| 857 | 
         
            +
                        plt.ylabel('Response to pulse at t=0')
         
     | 
| 858 | 
         
            +
                        plt.legend()
         
     | 
| 859 | 
         
            +
                        plt.title("Temporal filter")
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                        gb_sin = gb_sin_b[i].squeeze().detach()[5, :]
         
     | 
| 862 | 
         
            +
                        gb_cos = gb_cos_b[i].squeeze().detach()[5, :]
         
     | 
| 863 | 
         
            +
             
     | 
| 864 | 
         
            +
                        a = np.outer(t_cos[i].detach(), gb_sin)
         
     | 
| 865 | 
         
            +
                        b = np.outer(t_sin[i].detach(), gb_cos)
         
     | 
| 866 | 
         
            +
                        g_o = a + b
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                        a = np.outer(t_sin[i].detach(), gb_sin)
         
     | 
| 869 | 
         
            +
                        b = np.outer(t_cos[i].detach(), gb_cos)
         
     | 
| 870 | 
         
            +
                        g_e = a - b
         
     | 
| 871 | 
         
            +
                        energy_component = g_o ** 2 + g_e ** 2
         
     | 
| 872 | 
         
            +
             
     | 
| 873 | 
         
            +
                        plt.subplot(2, 3, 4)
         
     | 
| 874 | 
         
            +
                        curve = g_o
         
     | 
| 875 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 876 | 
         
            +
                        plt.title("Spatial Temporal even")
         
     | 
| 877 | 
         
            +
                        plt.subplot(2, 3, 5)
         
     | 
| 878 | 
         
            +
                        curve = g_e
         
     | 
| 879 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 880 | 
         
            +
                        plt.title("Spatial Temporal odd")
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                        plt.subplot(2, 3, 6)
         
     | 
| 883 | 
         
            +
                        curve = energy_component
         
     | 
| 884 | 
         
            +
                        plt.imshow(curve, cmap="gray")
         
     | 
| 885 | 
         
            +
                        plt.title("energy")
         
     | 
| 886 | 
         
            +
                        plt.savefig('filter_%d.png' % (index))
         
     | 
| 887 | 
         
            +
                        filenames.append('filter_%d.png' % (index))
         
     | 
| 888 | 
         
            +
                        index += 1
         
     | 
| 889 | 
         
            +
                        # plt.show()
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                # build gif
         
     | 
| 892 | 
         
            +
                with imageio.get_writer('filters_orientation.gif', mode='I') as writer:
         
     | 
| 893 | 
         
            +
                    for filename in filenames:
         
     | 
| 894 | 
         
            +
                        image = imageio.imread(filename)
         
     | 
| 895 | 
         
            +
                        writer.append_data(image)
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
                # Remove files
         
     | 
| 898 | 
         
            +
                for filename in set(filenames):
         
     | 
| 899 | 
         
            +
                    os.remove(filename)
         
     | 
| 900 | 
         
            +
             
     | 
| 901 | 
         
            +
             
     | 
| 902 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 903 | 
         
            +
                show_trained_model()
         
     | 
| 904 | 
         
            +
                # V1.demo()
         
     | 
| 905 | 
         
            +
                # draw_polar()
         
     | 
| 906 | 
         
            +
                # # V1.demo()
         
     | 
| 907 | 
         
            +
                # # draw_polar()
         
     | 
| 908 | 
         
            +
                show_trained_model()
         
     | 
| 909 | 
         
            +
                # te_spatial_temporal()
         
     |