Spaces:
Running
on
Zero
Running
on
Zero
Upload V1.py
Browse files
V1.py
CHANGED
|
@@ -7,7 +7,6 @@ from torch import nn
|
|
| 7 |
from torch.nn import functional as F
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
| 10 |
-
import pandas as pd
|
| 11 |
import imageio
|
| 12 |
from torch.cuda.amp import autocast as autocast
|
| 13 |
|
|
@@ -744,166 +743,3 @@ def circular_hist(ax, x, bins=16, density=True, offset=0, gaps=True):
|
|
| 744 |
ax.set_yticks([])
|
| 745 |
|
| 746 |
return n, bins, patches
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
def show_trained_model(file_name="/home/2TSSD/experiment/FFMEDNN/Sintel_fixv1_10.62_ckpt.pth.tar"):
|
| 750 |
-
import utils.torch_utils as utils
|
| 751 |
-
from model.fle_version_2_3.FFV1MT_MS import FFV1DNN
|
| 752 |
-
model = FFV1DNN(num_scales=8,
|
| 753 |
-
num_cells=256,
|
| 754 |
-
upsample_factor=8,
|
| 755 |
-
feature_channels=256,
|
| 756 |
-
scale_factor=16,
|
| 757 |
-
num_layers=6)
|
| 758 |
-
# model = utils.restore_model(model, file_name)
|
| 759 |
-
model = model.ffv1
|
| 760 |
-
t_point = 100
|
| 761 |
-
s_point = 100
|
| 762 |
-
t_kz = 6
|
| 763 |
-
filenames = []
|
| 764 |
-
x = np.arange(0, 6) * 40
|
| 765 |
-
x = np.repeat(x[None], axis=0, repeats=256)
|
| 766 |
-
temporal = model.temporal_pooling.data.cpu().squeeze().numpy()
|
| 767 |
-
mean = np.mean(temporal, axis=0)
|
| 768 |
-
plt.figure(figsize=(10, 10))
|
| 769 |
-
plt.subplot(2, 1, 1)
|
| 770 |
-
for idx in range(0, 256):
|
| 771 |
-
plt.plot(x[idx], temporal[idx])
|
| 772 |
-
plt.subplot(2, 1, 2)
|
| 773 |
-
plt.plot(x[0], mean, label="mean")
|
| 774 |
-
|
| 775 |
-
plt.xlabel("times (ms)")
|
| 776 |
-
plt.ylabel("temporal pooling weight")
|
| 777 |
-
plt.legend()
|
| 778 |
-
plt.grid(True)
|
| 779 |
-
plt.show()
|
| 780 |
-
neural_representation = model._get_v1_order()
|
| 781 |
-
|
| 782 |
-
fs = np.array([ne["fs"] for ne in neural_representation])
|
| 783 |
-
ft = np.array([ne["ft"] for ne in neural_representation])
|
| 784 |
-
|
| 785 |
-
ax1 = plt.subplot(131, projection='polar')
|
| 786 |
-
theta_list = []
|
| 787 |
-
v_list = []
|
| 788 |
-
energy_list = []
|
| 789 |
-
for index in range(len(neural_representation)):
|
| 790 |
-
v = neural_representation[index]["speed"]
|
| 791 |
-
theta = neural_representation[index]["theta"]
|
| 792 |
-
theta_list.append(theta)
|
| 793 |
-
v_list.append(v)
|
| 794 |
-
|
| 795 |
-
v_list, theta_list = np.array(v_list), np.array(theta_list)
|
| 796 |
-
x, y = pol2cart(v_list, theta_list)
|
| 797 |
-
plt.scatter(theta_list, v_list, c=v_list, cmap="rainbow", s=(v_list + 20), alpha=0.8)
|
| 798 |
-
plt.axis('on')
|
| 799 |
-
# plt.colorbar()
|
| 800 |
-
plt.grid(True)
|
| 801 |
-
# plt.subplot(132, projection="polar")
|
| 802 |
-
# plt.scatter(theta_list, np.ones_like(theta_list))
|
| 803 |
-
plt.subplot(132, projection='polar')
|
| 804 |
-
plt.scatter(theta_list, np.ones_like(v_list))
|
| 805 |
-
lst = []
|
| 806 |
-
for scale in range(8):
|
| 807 |
-
lst += ["scale %d" % scale] * 32
|
| 808 |
-
data = {"Spatial Frequency": fs, 'Temporal Frequency': ft, "Class": lst}
|
| 809 |
-
df = pd.DataFrame(data=data)
|
| 810 |
-
ax = plt.subplot(133, projection='polar')
|
| 811 |
-
# theta_list = theta_list[v_list > (ft * v_list.mean())]
|
| 812 |
-
print(len(theta_list))
|
| 813 |
-
bins_number = 8 # the [0, 360) interval will be subdivided into this
|
| 814 |
-
# number of equal bins
|
| 815 |
-
zone = np.pi / 8
|
| 816 |
-
theta_list[theta_list < (-np.pi + zone)] = theta_list[theta_list < (-np.pi + zone)] + np.pi * 2
|
| 817 |
-
bins = np.linspace(-np.pi + zone, np.pi + zone, bins_number + 1)
|
| 818 |
-
n, _, _ = plt.hist(theta_list, bins, edgecolor="black")
|
| 819 |
-
# ax.set_theta_offset(-np.pi / 8 - np.pi)
|
| 820 |
-
ax.set_yticklabels([])
|
| 821 |
-
plt.grid(True)
|
| 822 |
-
import seaborn as sns
|
| 823 |
-
sns.jointplot(data=df, x="Spatial Frequency", y="Temporal Frequency", hue="Class", xlim=[0, 0.3], ylim=[0, 0.3])
|
| 824 |
-
plt.grid(True)
|
| 825 |
-
g = sns.jointplot(data=df, x="Spatial Frequency", y="Temporal Frequency", xlim=[0, 0.25], ylim=[0, 0.25])
|
| 826 |
-
# g.plot_joint(sns.kdeplot, color="r", zorder=0, levels=6)
|
| 827 |
-
|
| 828 |
-
plt.grid(True)
|
| 829 |
-
plt.show()
|
| 830 |
-
|
| 831 |
-
# show spatial frequency preference and temporal frequency preference.
|
| 832 |
-
|
| 833 |
-
x = np.linspace(0, t_kz, t_point)
|
| 834 |
-
index = 0
|
| 835 |
-
for scale in range(len(model.spatial_filter)):
|
| 836 |
-
t_sin, t_cos = model.temporal_filter[scale].demo_temporal_filter(points=t_point)
|
| 837 |
-
gb_sin_b, gb_cos_b = model.spatial_filter[scale].demo_gabor_filters(points=s_point)
|
| 838 |
-
for i in range(gb_sin_b.size(0)):
|
| 839 |
-
plt.figure(figsize=(14, 9), dpi=80)
|
| 840 |
-
plt.subplot(2, 3, 1)
|
| 841 |
-
curve = gb_sin_b[i].squeeze().detach().numpy()
|
| 842 |
-
plt.imshow(curve)
|
| 843 |
-
plt.title("Gabor Sin")
|
| 844 |
-
plt.subplot(2, 3, 2)
|
| 845 |
-
curve = gb_cos_b[i].squeeze().detach().numpy()
|
| 846 |
-
plt.imshow(curve)
|
| 847 |
-
plt.title("Gabor Cos")
|
| 848 |
-
|
| 849 |
-
plt.subplot(2, 3, 3)
|
| 850 |
-
curve = t_sin[i].squeeze().detach().numpy()
|
| 851 |
-
plt.plot(x, curve, label='sin')
|
| 852 |
-
plt.title("Temporal Sin")
|
| 853 |
-
|
| 854 |
-
curve = t_cos[i].squeeze().detach().numpy()
|
| 855 |
-
plt.plot(x, curve, label='cos')
|
| 856 |
-
plt.xlabel('Time (s)')
|
| 857 |
-
plt.ylabel('Response to pulse at t=0')
|
| 858 |
-
plt.legend()
|
| 859 |
-
plt.title("Temporal filter")
|
| 860 |
-
|
| 861 |
-
gb_sin = gb_sin_b[i].squeeze().detach()[5, :]
|
| 862 |
-
gb_cos = gb_cos_b[i].squeeze().detach()[5, :]
|
| 863 |
-
|
| 864 |
-
a = np.outer(t_cos[i].detach(), gb_sin)
|
| 865 |
-
b = np.outer(t_sin[i].detach(), gb_cos)
|
| 866 |
-
g_o = a + b
|
| 867 |
-
|
| 868 |
-
a = np.outer(t_sin[i].detach(), gb_sin)
|
| 869 |
-
b = np.outer(t_cos[i].detach(), gb_cos)
|
| 870 |
-
g_e = a - b
|
| 871 |
-
energy_component = g_o ** 2 + g_e ** 2
|
| 872 |
-
|
| 873 |
-
plt.subplot(2, 3, 4)
|
| 874 |
-
curve = g_o
|
| 875 |
-
plt.imshow(curve, cmap="gray")
|
| 876 |
-
plt.title("Spatial Temporal even")
|
| 877 |
-
plt.subplot(2, 3, 5)
|
| 878 |
-
curve = g_e
|
| 879 |
-
plt.imshow(curve, cmap="gray")
|
| 880 |
-
plt.title("Spatial Temporal odd")
|
| 881 |
-
|
| 882 |
-
plt.subplot(2, 3, 6)
|
| 883 |
-
curve = energy_component
|
| 884 |
-
plt.imshow(curve, cmap="gray")
|
| 885 |
-
plt.title("energy")
|
| 886 |
-
plt.savefig('filter_%d.png' % (index))
|
| 887 |
-
filenames.append('filter_%d.png' % (index))
|
| 888 |
-
index += 1
|
| 889 |
-
# plt.show()
|
| 890 |
-
|
| 891 |
-
# build gif
|
| 892 |
-
with imageio.get_writer('filters_orientation.gif', mode='I') as writer:
|
| 893 |
-
for filename in filenames:
|
| 894 |
-
image = imageio.imread(filename)
|
| 895 |
-
writer.append_data(image)
|
| 896 |
-
|
| 897 |
-
# Remove files
|
| 898 |
-
for filename in set(filenames):
|
| 899 |
-
os.remove(filename)
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
if __name__ == "__main__":
|
| 903 |
-
show_trained_model()
|
| 904 |
-
# V1.demo()
|
| 905 |
-
# draw_polar()
|
| 906 |
-
# # V1.demo()
|
| 907 |
-
# # draw_polar()
|
| 908 |
-
show_trained_model()
|
| 909 |
-
# te_spatial_temporal()
|
|
|
|
| 7 |
from torch.nn import functional as F
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
|
|
|
| 10 |
import imageio
|
| 11 |
from torch.cuda.amp import autocast as autocast
|
| 12 |
|
|
|
|
| 743 |
ax.set_yticks([])
|
| 744 |
|
| 745 |
return n, bins, patches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|