Spaces:
Runtime error
Runtime error
update
Browse files- .gitignore +1 -0
- app.py +29 -248
- inference.py +81 -66
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
experiments/*
|
app.py
CHANGED
|
@@ -19,7 +19,8 @@ import pathlib
|
|
| 19 |
import gradio as gr
|
| 20 |
import torch
|
| 21 |
|
| 22 |
-
from inference import
|
|
|
|
| 23 |
# from trainer import Trainer
|
| 24 |
# from uploader import upload
|
| 25 |
|
|
@@ -69,173 +70,6 @@ def update_output_files() -> dict:
|
|
| 69 |
paths = [path.as_posix() for path in paths] # type: ignore
|
| 70 |
return gr.update(value=paths or None)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
def create_training_demo(trainer: Trainer,
|
| 74 |
-
pipe: InferencePipeline) -> gr.Blocks:
|
| 75 |
-
with gr.Blocks() as demo:
|
| 76 |
-
base_model = gr.Dropdown(
|
| 77 |
-
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
| 78 |
-
value='CompVis/stable-diffusion-v1-4',
|
| 79 |
-
label='Base Model',
|
| 80 |
-
visible=True)
|
| 81 |
-
resolution = gr.Dropdown(choices=['512', '768'],
|
| 82 |
-
value='512',
|
| 83 |
-
label='Resolution',
|
| 84 |
-
visible=True)
|
| 85 |
-
|
| 86 |
-
with gr.Row():
|
| 87 |
-
with gr.Box():
|
| 88 |
-
concept_images_collection = []
|
| 89 |
-
concept_prompt_collection = []
|
| 90 |
-
class_prompt_collection = []
|
| 91 |
-
buttons_collection = []
|
| 92 |
-
delete_collection = []
|
| 93 |
-
is_visible = []
|
| 94 |
-
maximum_concepts = 3
|
| 95 |
-
row = [None] * maximum_concepts
|
| 96 |
-
for x in range(maximum_concepts):
|
| 97 |
-
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
|
| 98 |
-
ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
|
| 99 |
-
if(x == 0):
|
| 100 |
-
visible = True
|
| 101 |
-
is_visible.append(gr.State(value=True))
|
| 102 |
-
else:
|
| 103 |
-
visible = False
|
| 104 |
-
is_visible.append(gr.State(value=False))
|
| 105 |
-
|
| 106 |
-
concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
|
| 107 |
-
with gr.Column(visible=visible) as row[x]:
|
| 108 |
-
concept_prompt_collection.append(
|
| 109 |
-
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
|
| 110 |
-
placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
|
| 111 |
-
)
|
| 112 |
-
class_prompt_collection.append(
|
| 113 |
-
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
|
| 114 |
-
max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
|
| 115 |
-
)
|
| 116 |
-
with gr.Row():
|
| 117 |
-
if(x < maximum_concepts-1):
|
| 118 |
-
buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
|
| 119 |
-
if(x > 0):
|
| 120 |
-
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
|
| 121 |
-
|
| 122 |
-
counter_add = 1
|
| 123 |
-
for button in buttons_collection:
|
| 124 |
-
if(counter_add < len(buttons_collection)):
|
| 125 |
-
button.click(lambda:
|
| 126 |
-
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
|
| 127 |
-
None,
|
| 128 |
-
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
|
| 129 |
-
else:
|
| 130 |
-
button.click(lambda:
|
| 131 |
-
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
|
| 132 |
-
None,
|
| 133 |
-
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
|
| 134 |
-
counter_add += 1
|
| 135 |
-
|
| 136 |
-
counter_delete = 1
|
| 137 |
-
for delete_button in delete_collection:
|
| 138 |
-
if(counter_delete < len(delete_collection)+1):
|
| 139 |
-
if counter_delete == 1:
|
| 140 |
-
delete_button.click(lambda:
|
| 141 |
-
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
|
| 142 |
-
None,
|
| 143 |
-
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
|
| 144 |
-
else:
|
| 145 |
-
delete_button.click(lambda:
|
| 146 |
-
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
|
| 147 |
-
None,
|
| 148 |
-
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
|
| 149 |
-
counter_delete += 1
|
| 150 |
-
gr.Markdown('''
|
| 151 |
-
- We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
|
| 152 |
-
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
|
| 153 |
-
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
|
| 154 |
-
- Class prompt should be the object category.
|
| 155 |
-
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
|
| 156 |
-
''')
|
| 157 |
-
with gr.Box():
|
| 158 |
-
gr.Markdown('Training Parameters')
|
| 159 |
-
with gr.Row():
|
| 160 |
-
modifier_token = gr.Checkbox(label='modifier token',
|
| 161 |
-
value=True)
|
| 162 |
-
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
| 163 |
-
value=False)
|
| 164 |
-
num_training_steps = gr.Number(
|
| 165 |
-
label='Number of Training Steps', value=1000, precision=0)
|
| 166 |
-
learning_rate = gr.Number(label='Learning Rate', value=0.00001)
|
| 167 |
-
batch_size = gr.Number(
|
| 168 |
-
label='batch_size', value=1, precision=0)
|
| 169 |
-
with gr.Row():
|
| 170 |
-
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
| 171 |
-
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
|
| 172 |
-
with gr.Accordion('Other Parameters', open=False):
|
| 173 |
-
gradient_accumulation = gr.Number(
|
| 174 |
-
label='Number of Gradient Accumulation',
|
| 175 |
-
value=1,
|
| 176 |
-
precision=0)
|
| 177 |
-
num_reg_images = gr.Number(
|
| 178 |
-
label='Number of Class Concept images',
|
| 179 |
-
value=200,
|
| 180 |
-
precision=0)
|
| 181 |
-
gen_images = gr.Checkbox(label='Generated images as regularization',
|
| 182 |
-
value=False)
|
| 183 |
-
gr.Markdown('''
|
| 184 |
-
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
|
| 185 |
-
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
|
| 186 |
-
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
|
| 187 |
-
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
| 188 |
-
- We retrieve real images for class concept using clip_retireval library which can take some time.
|
| 189 |
-
''')
|
| 190 |
-
|
| 191 |
-
run_button = gr.Button('Start Training')
|
| 192 |
-
with gr.Box():
|
| 193 |
-
with gr.Row():
|
| 194 |
-
check_status_button = gr.Button('Check Training Status')
|
| 195 |
-
with gr.Column():
|
| 196 |
-
with gr.Box():
|
| 197 |
-
gr.Markdown('Message')
|
| 198 |
-
training_status = gr.Markdown()
|
| 199 |
-
output_files = gr.Files(label='Trained Weight Files')
|
| 200 |
-
|
| 201 |
-
run_button.click(fn=pipe.clear,
|
| 202 |
-
inputs=None,
|
| 203 |
-
outputs=None,)
|
| 204 |
-
run_button.click(fn=trainer.run,
|
| 205 |
-
inputs=[
|
| 206 |
-
base_model,
|
| 207 |
-
resolution,
|
| 208 |
-
num_training_steps,
|
| 209 |
-
learning_rate,
|
| 210 |
-
train_text_encoder,
|
| 211 |
-
modifier_token,
|
| 212 |
-
gradient_accumulation,
|
| 213 |
-
batch_size,
|
| 214 |
-
use_8bit_adam,
|
| 215 |
-
gradient_checkpointing,
|
| 216 |
-
gen_images,
|
| 217 |
-
num_reg_images,
|
| 218 |
-
] +
|
| 219 |
-
concept_images_collection +
|
| 220 |
-
concept_prompt_collection +
|
| 221 |
-
class_prompt_collection
|
| 222 |
-
,
|
| 223 |
-
outputs=[
|
| 224 |
-
training_status,
|
| 225 |
-
output_files,
|
| 226 |
-
],
|
| 227 |
-
queue=False)
|
| 228 |
-
check_status_button.click(fn=trainer.check_if_running,
|
| 229 |
-
inputs=None,
|
| 230 |
-
outputs=training_status,
|
| 231 |
-
queue=False)
|
| 232 |
-
check_status_button.click(fn=update_output_files,
|
| 233 |
-
inputs=None,
|
| 234 |
-
outputs=output_files,
|
| 235 |
-
queue=False)
|
| 236 |
-
return demo
|
| 237 |
-
|
| 238 |
-
|
| 239 |
def find_weight_files() -> list[str]:
|
| 240 |
curr_dir = pathlib.Path(__file__).parent
|
| 241 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
@@ -251,49 +85,32 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 251 |
with gr.Blocks() as demo:
|
| 252 |
with gr.Row():
|
| 253 |
with gr.Column():
|
| 254 |
-
|
| 255 |
-
choices=['
|
| 256 |
-
value='
|
| 257 |
-
label='
|
| 258 |
visible=True)
|
| 259 |
-
resolution = gr.Dropdown(choices=[512, 768],
|
| 260 |
-
value=512,
|
| 261 |
-
label='Resolution',
|
| 262 |
-
visible=True)
|
| 263 |
reload_button = gr.Button('Reload Weight List')
|
| 264 |
-
weight_name = gr.Dropdown(choices=find_weight_files(),
|
| 265 |
-
value='custom-diffusion-models/cat.bin',
|
| 266 |
-
label='Custom Diffusion Weight File')
|
| 267 |
prompt = gr.Textbox(
|
| 268 |
label='Prompt',
|
| 269 |
max_lines=1,
|
| 270 |
-
placeholder='Example: "
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
with gr.Accordion('Other Parameters', open=False):
|
| 277 |
-
|
| 278 |
-
minimum=0,
|
| 279 |
-
maximum=500,
|
| 280 |
-
step=1,
|
| 281 |
-
value=100)
|
| 282 |
-
guidance_scale = gr.Slider(label='CFG Scale',
|
| 283 |
minimum=0,
|
| 284 |
maximum=50,
|
| 285 |
step=0.1,
|
| 286 |
-
value=
|
| 287 |
-
|
| 288 |
-
minimum=0,
|
| 289 |
-
maximum=1.,
|
| 290 |
-
step=0.1,
|
| 291 |
-
value=1.)
|
| 292 |
-
batch_size = gr.Slider(label='Batch Size',
|
| 293 |
minimum=0,
|
| 294 |
maximum=10.,
|
| 295 |
step=1,
|
| 296 |
-
value=
|
| 297 |
|
| 298 |
run_button = gr.Button('Generate')
|
| 299 |
|
|
@@ -308,61 +125,27 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 308 |
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
| 309 |
inputs=None,
|
| 310 |
outputs=weight_name)
|
| 311 |
-
prompt.submit(fn=
|
| 312 |
inputs=[
|
| 313 |
-
|
| 314 |
-
weight_name,
|
| 315 |
prompt,
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
guidance_scale,
|
| 319 |
-
eta,
|
| 320 |
-
batch_size,
|
| 321 |
-
resolution
|
| 322 |
],
|
| 323 |
outputs=result,
|
| 324 |
queue=False)
|
| 325 |
-
run_button.click(fn=
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
guidance_scale,
|
| 333 |
-
eta,
|
| 334 |
-
batch_size,
|
| 335 |
-
resolution
|
| 336 |
-
],
|
| 337 |
outputs=result,
|
| 338 |
queue=False)
|
| 339 |
return demo
|
| 340 |
|
| 341 |
|
| 342 |
-
def create_upload_demo() -> gr.Blocks:
|
| 343 |
-
with gr.Blocks() as demo:
|
| 344 |
-
model_name = gr.Textbox(label='Model Name')
|
| 345 |
-
hf_token = gr.Textbox(
|
| 346 |
-
label='Hugging Face Token (with write permission)')
|
| 347 |
-
upload_button = gr.Button('Upload')
|
| 348 |
-
with gr.Box():
|
| 349 |
-
gr.Markdown('Message')
|
| 350 |
-
result = gr.Markdown()
|
| 351 |
-
gr.Markdown('''
|
| 352 |
-
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
| 353 |
-
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
| 354 |
-
''')
|
| 355 |
-
|
| 356 |
-
upload_button.click(fn=upload,
|
| 357 |
-
inputs=[model_name, hf_token],
|
| 358 |
-
outputs=result)
|
| 359 |
-
|
| 360 |
-
return demo
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
pipe = InferencePipeline()
|
| 364 |
-
trainer = Trainer()
|
| 365 |
-
|
| 366 |
with gr.Blocks(css='style.css') as demo:
|
| 367 |
if os.getenv('IS_SHARED_UI'):
|
| 368 |
show_warning(SHARED_UI_WARNING)
|
|
@@ -374,12 +157,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 374 |
gr.Markdown(DETAILDESCRIPTION)
|
| 375 |
|
| 376 |
with gr.Tabs():
|
| 377 |
-
|
| 378 |
-
create_training_demo(trainer, pipe)
|
| 379 |
with gr.TabItem('Test'):
|
| 380 |
create_inference_demo(pipe)
|
| 381 |
-
|
| 382 |
-
create_upload_demo()
|
| 383 |
|
| 384 |
demo.queue(default_enabled=False).launch(share=False)
|
| 385 |
|
|
|
|
| 19 |
import gradio as gr
|
| 20 |
import torch
|
| 21 |
|
| 22 |
+
from inference import inference_fn
|
| 23 |
+
# from inference_custom_diffusion import InferencePipeline
|
| 24 |
# from trainer import Trainer
|
| 25 |
# from uploader import upload
|
| 26 |
|
|
|
|
| 70 |
paths = [path.as_posix() for path in paths] # type: ignore
|
| 71 |
return gr.update(value=paths or None)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def find_weight_files() -> list[str]:
|
| 74 |
curr_dir = pathlib.Path(__file__).parent
|
| 75 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
|
|
| 85 |
with gr.Blocks() as demo:
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column():
|
| 88 |
+
model_id = gr.Dropdown(
|
| 89 |
+
choices=['experiments/painted_on'],
|
| 90 |
+
value='experiments/painted_on',
|
| 91 |
+
label='Relation',
|
| 92 |
visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
reload_button = gr.Button('Reload Weight List')
|
|
|
|
|
|
|
|
|
|
| 94 |
prompt = gr.Textbox(
|
| 95 |
label='Prompt',
|
| 96 |
max_lines=1,
|
| 97 |
+
placeholder='Example: "cat <R> stone"')
|
| 98 |
+
placeholder_string = gr.Textbox(
|
| 99 |
+
label='Placeholder String',
|
| 100 |
+
max_lines=1,
|
| 101 |
+
placeholder='Example: "<R>"')
|
| 102 |
+
|
| 103 |
with gr.Accordion('Other Parameters', open=False):
|
| 104 |
+
guidance_scale = gr.Slider(label='Classifier-Free Guidance Scale',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
minimum=0,
|
| 106 |
maximum=50,
|
| 107 |
step=0.1,
|
| 108 |
+
value=7.5)
|
| 109 |
+
num_samples = gr.Slider(label='Batch Size',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
minimum=0,
|
| 111 |
maximum=10.,
|
| 112 |
step=1,
|
| 113 |
+
value=10)
|
| 114 |
|
| 115 |
run_button = gr.Button('Generate')
|
| 116 |
|
|
|
|
| 125 |
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
| 126 |
inputs=None,
|
| 127 |
outputs=weight_name)
|
| 128 |
+
prompt.submit(fn=inference_fn,
|
| 129 |
inputs=[
|
| 130 |
+
model_id,
|
|
|
|
| 131 |
prompt,
|
| 132 |
+
placeholder_string,
|
| 133 |
+
guidance_scale
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
],
|
| 135 |
outputs=result,
|
| 136 |
queue=False)
|
| 137 |
+
run_button.click(fn=inference_fn,
|
| 138 |
+
inputs=[
|
| 139 |
+
model_id,
|
| 140 |
+
prompt,
|
| 141 |
+
placeholder_string,
|
| 142 |
+
guidance_scale
|
| 143 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
outputs=result,
|
| 145 |
queue=False)
|
| 146 |
return demo
|
| 147 |
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
with gr.Blocks(css='style.css') as demo:
|
| 150 |
if os.getenv('IS_SHARED_UI'):
|
| 151 |
show_warning(SHARED_UI_WARNING)
|
|
|
|
| 157 |
gr.Markdown(DETAILDESCRIPTION)
|
| 158 |
|
| 159 |
with gr.Tabs():
|
| 160 |
+
|
|
|
|
| 161 |
with gr.TabItem('Test'):
|
| 162 |
create_inference_demo(pipe)
|
| 163 |
+
|
|
|
|
| 164 |
|
| 165 |
demo.queue(default_enabled=False).launch(share=False)
|
| 166 |
|
inference.py
CHANGED
|
@@ -12,70 +12,85 @@ import torch
|
|
| 12 |
from diffusers import StableDiffusionPipeline
|
| 13 |
sys.path.insert(0, './ReVersion')
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from diffusers import StableDiffusionPipeline
|
| 13 |
sys.path.insert(0, './ReVersion')
|
| 14 |
|
| 15 |
+
# below are original
|
| 16 |
+
import os
|
| 17 |
+
# import argparse
|
| 18 |
|
| 19 |
+
# import torch
|
| 20 |
+
from PIL import Image
|
| 21 |
+
|
| 22 |
+
# from diffusers import StableDiffusionPipeline
|
| 23 |
+
# sys.path.insert(0, './ReVersion')
|
| 24 |
+
from templates.templates import inference_templates
|
| 25 |
+
|
| 26 |
+
import math
|
| 27 |
+
|
| 28 |
+
"""
|
| 29 |
+
Inference script for generating batch results
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def make_image_grid(imgs, rows, cols):
|
| 33 |
+
assert len(imgs) == rows*cols
|
| 34 |
+
|
| 35 |
+
w, h = imgs[0].size
|
| 36 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
| 37 |
+
grid_w, grid_h = grid.size
|
| 38 |
+
|
| 39 |
+
for i, img in enumerate(imgs):
|
| 40 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
| 41 |
+
return grid
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def inference_fn(
|
| 45 |
+
model_id,
|
| 46 |
+
prompt,
|
| 47 |
+
placeholder_string,
|
| 48 |
+
num_samples,
|
| 49 |
+
guidance_scale
|
| 50 |
+
):
|
| 51 |
+
|
| 52 |
+
# create inference pipeline
|
| 53 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to("cuda")
|
| 54 |
+
|
| 55 |
+
# make directory to save images
|
| 56 |
+
image_root_folder = os.path.join(model_id, 'inference')
|
| 57 |
+
os.makedirs(image_root_folder, exist_ok = True)
|
| 58 |
+
|
| 59 |
+
if prompt is None and args.template_name is None:
|
| 60 |
+
raise ValueError("please input a single prompt through'--prompt' or select a batch of prompts using '--template_name'.")
|
| 61 |
+
|
| 62 |
+
# single text prompt
|
| 63 |
+
if prompt is not None:
|
| 64 |
+
prompt_list = [prompt]
|
| 65 |
+
else:
|
| 66 |
+
prompt_list = []
|
| 67 |
+
|
| 68 |
+
if args.template_name is not None:
|
| 69 |
+
# read the selected text prompts for generation
|
| 70 |
+
prompt_list.extend(inference_templates[args.template_name])
|
| 71 |
+
|
| 72 |
+
for prompt in prompt_list:
|
| 73 |
+
# insert relation prompt <R>
|
| 74 |
+
prompt = prompt.lower().replace("<r>", "<R>").format(placeholder_string)
|
| 75 |
+
|
| 76 |
+
# make sub-folder
|
| 77 |
+
image_folder = os.path.join(image_root_folder, prompt, 'samples')
|
| 78 |
+
os.makedirs(image_folder, exist_ok = True)
|
| 79 |
+
|
| 80 |
+
# batch generation
|
| 81 |
+
images = pipe(prompt, num_inference_steps=50, guidance_scale=guidance_scale, num_images_per_prompt=num_samples).images
|
| 82 |
+
|
| 83 |
+
# save generated images
|
| 84 |
+
for idx, image in enumerate(images):
|
| 85 |
+
image_name = f"{str(idx).zfill(4)}.png"
|
| 86 |
+
image_path = os.path.join(image_folder, image_name)
|
| 87 |
+
image.save(image_path)
|
| 88 |
+
|
| 89 |
+
# save a grid of images
|
| 90 |
+
image_grid = make_image_grid(images, rows=2, cols=math.ceil(num_samples/2))
|
| 91 |
+
image_grid_path = os.path.join(image_root_folder, prompt, f'{prompt}.png')
|
| 92 |
+
|
| 93 |
+
return image_grid
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
main()
|