Spaces:
Sleeping
Sleeping
update
Browse files- app.py +199 -14
- app_001.py +199 -0
- inference.py +81 -0
app.py
CHANGED
@@ -54,10 +54,8 @@ You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
|
54 |
</center>
|
55 |
'''
|
56 |
|
57 |
-
os.system("git clone https://github.com/
|
58 |
-
sys.path.append("
|
59 |
-
|
60 |
-
from ReVersion.inference import *
|
61 |
|
62 |
def show_warning(warning_text: str) -> gr.Blocks:
|
63 |
with gr.Blocks() as demo:
|
@@ -72,6 +70,172 @@ def update_output_files() -> dict:
|
|
72 |
return gr.update(value=paths or None)
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def find_weight_files() -> list[str]:
|
76 |
curr_dir = pathlib.Path(__file__).parent
|
77 |
paths = sorted(curr_dir.rglob('*.bin'))
|
@@ -88,8 +252,8 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
88 |
with gr.Row():
|
89 |
with gr.Column():
|
90 |
base_model = gr.Dropdown(
|
91 |
-
choices=['
|
92 |
-
value='
|
93 |
label='Base Model',
|
94 |
visible=True)
|
95 |
resolution = gr.Dropdown(choices=[512, 768],
|
@@ -98,12 +262,12 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
98 |
visible=True)
|
99 |
reload_button = gr.Button('Reload Weight List')
|
100 |
weight_name = gr.Dropdown(choices=find_weight_files(),
|
101 |
-
value='
|
102 |
-
label='
|
103 |
prompt = gr.Textbox(
|
104 |
label='Prompt',
|
105 |
max_lines=1,
|
106 |
-
placeholder='Example: "cat
|
107 |
seed = gr.Slider(label='Seed',
|
108 |
minimum=0,
|
109 |
maximum=100000,
|
@@ -175,6 +339,27 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
175 |
return demo
|
176 |
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
pipe = InferencePipeline()
|
179 |
trainer = Trainer()
|
180 |
|
@@ -189,12 +374,12 @@ with gr.Blocks(css='style.css') as demo:
|
|
189 |
gr.Markdown(DETAILDESCRIPTION)
|
190 |
|
191 |
with gr.Tabs():
|
192 |
-
|
193 |
-
|
194 |
-
with gr.TabItem('
|
195 |
create_inference_demo(pipe)
|
196 |
-
|
197 |
-
|
198 |
|
199 |
demo.queue(default_enabled=False).launch(share=False)
|
200 |
|
|
|
54 |
</center>
|
55 |
'''
|
56 |
|
57 |
+
os.system("git clone https://github.com/adobe-research/custom-diffusion")
|
58 |
+
sys.path.append("custom-diffusion")
|
|
|
|
|
59 |
|
60 |
def show_warning(warning_text: str) -> gr.Blocks:
|
61 |
with gr.Blocks() as demo:
|
|
|
70 |
return gr.update(value=paths or None)
|
71 |
|
72 |
|
73 |
+
def create_training_demo(trainer: Trainer,
|
74 |
+
pipe: InferencePipeline) -> gr.Blocks:
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
base_model = gr.Dropdown(
|
77 |
+
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
78 |
+
value='CompVis/stable-diffusion-v1-4',
|
79 |
+
label='Base Model',
|
80 |
+
visible=True)
|
81 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
82 |
+
value='512',
|
83 |
+
label='Resolution',
|
84 |
+
visible=True)
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Box():
|
88 |
+
concept_images_collection = []
|
89 |
+
concept_prompt_collection = []
|
90 |
+
class_prompt_collection = []
|
91 |
+
buttons_collection = []
|
92 |
+
delete_collection = []
|
93 |
+
is_visible = []
|
94 |
+
maximum_concepts = 3
|
95 |
+
row = [None] * maximum_concepts
|
96 |
+
for x in range(maximum_concepts):
|
97 |
+
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
|
98 |
+
ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
|
99 |
+
if(x == 0):
|
100 |
+
visible = True
|
101 |
+
is_visible.append(gr.State(value=True))
|
102 |
+
else:
|
103 |
+
visible = False
|
104 |
+
is_visible.append(gr.State(value=False))
|
105 |
+
|
106 |
+
concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
|
107 |
+
with gr.Column(visible=visible) as row[x]:
|
108 |
+
concept_prompt_collection.append(
|
109 |
+
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
|
110 |
+
placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
|
111 |
+
)
|
112 |
+
class_prompt_collection.append(
|
113 |
+
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
|
114 |
+
max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
|
115 |
+
)
|
116 |
+
with gr.Row():
|
117 |
+
if(x < maximum_concepts-1):
|
118 |
+
buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
|
119 |
+
if(x > 0):
|
120 |
+
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
|
121 |
+
|
122 |
+
counter_add = 1
|
123 |
+
for button in buttons_collection:
|
124 |
+
if(counter_add < len(buttons_collection)):
|
125 |
+
button.click(lambda:
|
126 |
+
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
|
127 |
+
None,
|
128 |
+
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
|
129 |
+
else:
|
130 |
+
button.click(lambda:
|
131 |
+
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
|
132 |
+
None,
|
133 |
+
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
|
134 |
+
counter_add += 1
|
135 |
+
|
136 |
+
counter_delete = 1
|
137 |
+
for delete_button in delete_collection:
|
138 |
+
if(counter_delete < len(delete_collection)+1):
|
139 |
+
if counter_delete == 1:
|
140 |
+
delete_button.click(lambda:
|
141 |
+
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
|
142 |
+
None,
|
143 |
+
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
|
144 |
+
else:
|
145 |
+
delete_button.click(lambda:
|
146 |
+
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
|
147 |
+
None,
|
148 |
+
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
|
149 |
+
counter_delete += 1
|
150 |
+
gr.Markdown('''
|
151 |
+
- We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
|
152 |
+
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
|
153 |
+
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
|
154 |
+
- Class prompt should be the object category.
|
155 |
+
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
|
156 |
+
''')
|
157 |
+
with gr.Box():
|
158 |
+
gr.Markdown('Training Parameters')
|
159 |
+
with gr.Row():
|
160 |
+
modifier_token = gr.Checkbox(label='modifier token',
|
161 |
+
value=True)
|
162 |
+
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
163 |
+
value=False)
|
164 |
+
num_training_steps = gr.Number(
|
165 |
+
label='Number of Training Steps', value=1000, precision=0)
|
166 |
+
learning_rate = gr.Number(label='Learning Rate', value=0.00001)
|
167 |
+
batch_size = gr.Number(
|
168 |
+
label='batch_size', value=1, precision=0)
|
169 |
+
with gr.Row():
|
170 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
171 |
+
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
|
172 |
+
with gr.Accordion('Other Parameters', open=False):
|
173 |
+
gradient_accumulation = gr.Number(
|
174 |
+
label='Number of Gradient Accumulation',
|
175 |
+
value=1,
|
176 |
+
precision=0)
|
177 |
+
num_reg_images = gr.Number(
|
178 |
+
label='Number of Class Concept images',
|
179 |
+
value=200,
|
180 |
+
precision=0)
|
181 |
+
gen_images = gr.Checkbox(label='Generated images as regularization',
|
182 |
+
value=False)
|
183 |
+
gr.Markdown('''
|
184 |
+
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
|
185 |
+
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
|
186 |
+
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
|
187 |
+
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
188 |
+
- We retrieve real images for class concept using clip_retireval library which can take some time.
|
189 |
+
''')
|
190 |
+
|
191 |
+
run_button = gr.Button('Start Training')
|
192 |
+
with gr.Box():
|
193 |
+
with gr.Row():
|
194 |
+
check_status_button = gr.Button('Check Training Status')
|
195 |
+
with gr.Column():
|
196 |
+
with gr.Box():
|
197 |
+
gr.Markdown('Message')
|
198 |
+
training_status = gr.Markdown()
|
199 |
+
output_files = gr.Files(label='Trained Weight Files')
|
200 |
+
|
201 |
+
run_button.click(fn=pipe.clear,
|
202 |
+
inputs=None,
|
203 |
+
outputs=None,)
|
204 |
+
run_button.click(fn=trainer.run,
|
205 |
+
inputs=[
|
206 |
+
base_model,
|
207 |
+
resolution,
|
208 |
+
num_training_steps,
|
209 |
+
learning_rate,
|
210 |
+
train_text_encoder,
|
211 |
+
modifier_token,
|
212 |
+
gradient_accumulation,
|
213 |
+
batch_size,
|
214 |
+
use_8bit_adam,
|
215 |
+
gradient_checkpointing,
|
216 |
+
gen_images,
|
217 |
+
num_reg_images,
|
218 |
+
] +
|
219 |
+
concept_images_collection +
|
220 |
+
concept_prompt_collection +
|
221 |
+
class_prompt_collection
|
222 |
+
,
|
223 |
+
outputs=[
|
224 |
+
training_status,
|
225 |
+
output_files,
|
226 |
+
],
|
227 |
+
queue=False)
|
228 |
+
check_status_button.click(fn=trainer.check_if_running,
|
229 |
+
inputs=None,
|
230 |
+
outputs=training_status,
|
231 |
+
queue=False)
|
232 |
+
check_status_button.click(fn=update_output_files,
|
233 |
+
inputs=None,
|
234 |
+
outputs=output_files,
|
235 |
+
queue=False)
|
236 |
+
return demo
|
237 |
+
|
238 |
+
|
239 |
def find_weight_files() -> list[str]:
|
240 |
curr_dir = pathlib.Path(__file__).parent
|
241 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
|
252 |
with gr.Row():
|
253 |
with gr.Column():
|
254 |
base_model = gr.Dropdown(
|
255 |
+
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
256 |
+
value='CompVis/stable-diffusion-v1-4',
|
257 |
label='Base Model',
|
258 |
visible=True)
|
259 |
resolution = gr.Dropdown(choices=[512, 768],
|
|
|
262 |
visible=True)
|
263 |
reload_button = gr.Button('Reload Weight List')
|
264 |
weight_name = gr.Dropdown(choices=find_weight_files(),
|
265 |
+
value='custom-diffusion-models/cat.bin',
|
266 |
+
label='Custom Diffusion Weight File')
|
267 |
prompt = gr.Textbox(
|
268 |
label='Prompt',
|
269 |
max_lines=1,
|
270 |
+
placeholder='Example: "\<new1\> cat in outer space"')
|
271 |
seed = gr.Slider(label='Seed',
|
272 |
minimum=0,
|
273 |
maximum=100000,
|
|
|
339 |
return demo
|
340 |
|
341 |
|
342 |
+
def create_upload_demo() -> gr.Blocks:
|
343 |
+
with gr.Blocks() as demo:
|
344 |
+
model_name = gr.Textbox(label='Model Name')
|
345 |
+
hf_token = gr.Textbox(
|
346 |
+
label='Hugging Face Token (with write permission)')
|
347 |
+
upload_button = gr.Button('Upload')
|
348 |
+
with gr.Box():
|
349 |
+
gr.Markdown('Message')
|
350 |
+
result = gr.Markdown()
|
351 |
+
gr.Markdown('''
|
352 |
+
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
353 |
+
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
354 |
+
''')
|
355 |
+
|
356 |
+
upload_button.click(fn=upload,
|
357 |
+
inputs=[model_name, hf_token],
|
358 |
+
outputs=result)
|
359 |
+
|
360 |
+
return demo
|
361 |
+
|
362 |
+
|
363 |
pipe = InferencePipeline()
|
364 |
trainer = Trainer()
|
365 |
|
|
|
374 |
gr.Markdown(DETAILDESCRIPTION)
|
375 |
|
376 |
with gr.Tabs():
|
377 |
+
with gr.TabItem('Train'):
|
378 |
+
create_training_demo(trainer, pipe)
|
379 |
+
with gr.TabItem('Test'):
|
380 |
create_inference_demo(pipe)
|
381 |
+
with gr.TabItem('Upload'):
|
382 |
+
create_upload_demo()
|
383 |
|
384 |
demo.queue(default_enabled=False).launch(share=False)
|
385 |
|
app_001.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""Demo app for https://github.com/adobe-research/custom-diffusion.
|
3 |
+
The code in this repo is partly adapted from the following repository:
|
4 |
+
https://huggingface.co/spaces/hysts/LoRA-SD-training
|
5 |
+
MIT License
|
6 |
+
Copyright (c) 2022 hysts
|
7 |
+
==========================================================================================
|
8 |
+
Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
|
9 |
+
Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
|
10 |
+
LICENSE.
|
11 |
+
==========================================================================================
|
12 |
+
"""
|
13 |
+
|
14 |
+
from __future__ import annotations
|
15 |
+
import sys
|
16 |
+
import os
|
17 |
+
import pathlib
|
18 |
+
|
19 |
+
import gradio as gr
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from inference import InferencePipeline
|
23 |
+
from trainer import Trainer
|
24 |
+
from uploader import upload
|
25 |
+
|
26 |
+
TITLE = '# Custom Diffusion + StableDiffusion Training UI'
|
27 |
+
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
|
28 |
+
It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
|
29 |
+
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
30 |
+
'''
|
31 |
+
DETAILDESCRIPTION='''
|
32 |
+
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
|
33 |
+
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
|
34 |
+
This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
|
35 |
+
<center>
|
36 |
+
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
|
37 |
+
</center>
|
38 |
+
'''
|
39 |
+
|
40 |
+
ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
|
41 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
42 |
+
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
43 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
44 |
+
'''
|
45 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
46 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
47 |
+
|
48 |
+
else:
|
49 |
+
SETTINGS = 'Settings'
|
50 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
51 |
+
<center>
|
52 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
53 |
+
"T4 small" is sufficient to run this demo.
|
54 |
+
</center>
|
55 |
+
'''
|
56 |
+
|
57 |
+
os.system("git clone https://github.com/ziqihuangg/ReVersion")
|
58 |
+
sys.path.append("ReVersion")
|
59 |
+
|
60 |
+
|
61 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
with gr.Box():
|
64 |
+
gr.Markdown(warning_text)
|
65 |
+
return demo
|
66 |
+
|
67 |
+
|
68 |
+
def update_output_files() -> dict:
|
69 |
+
paths = sorted(pathlib.Path('results').glob('*.bin'))
|
70 |
+
paths = [path.as_posix() for path in paths] # type: ignore
|
71 |
+
return gr.update(value=paths or None)
|
72 |
+
|
73 |
+
|
74 |
+
def find_weight_files() -> list[str]:
|
75 |
+
curr_dir = pathlib.Path(__file__).parent
|
76 |
+
paths = sorted(curr_dir.rglob('*.bin'))
|
77 |
+
paths = [path for path in paths if '.lfs' not in str(path)]
|
78 |
+
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
79 |
+
|
80 |
+
|
81 |
+
def reload_custom_diffusion_weight_list() -> dict:
|
82 |
+
return gr.update(choices=find_weight_files())
|
83 |
+
|
84 |
+
|
85 |
+
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
base_model = gr.Dropdown(
|
90 |
+
choices=['ReVersion/experiments/painted_on'],
|
91 |
+
value='ReVersion/experiments/painted_on',
|
92 |
+
label='Base Model',
|
93 |
+
visible=True)
|
94 |
+
resolution = gr.Dropdown(choices=[512, 768],
|
95 |
+
value=512,
|
96 |
+
label='Resolution',
|
97 |
+
visible=True)
|
98 |
+
reload_button = gr.Button('Reload Weight List')
|
99 |
+
weight_name = gr.Dropdown(choices=find_weight_files(),
|
100 |
+
value='ReVersion/experiments/painted_on',
|
101 |
+
label='ReVersion/experiments/painted_on')
|
102 |
+
prompt = gr.Textbox(
|
103 |
+
label='Prompt',
|
104 |
+
max_lines=1,
|
105 |
+
placeholder='Example: "cat <R> stone"')
|
106 |
+
seed = gr.Slider(label='Seed',
|
107 |
+
minimum=0,
|
108 |
+
maximum=100000,
|
109 |
+
step=1,
|
110 |
+
value=42)
|
111 |
+
with gr.Accordion('Other Parameters', open=False):
|
112 |
+
num_steps = gr.Slider(label='Number of Steps',
|
113 |
+
minimum=0,
|
114 |
+
maximum=500,
|
115 |
+
step=1,
|
116 |
+
value=100)
|
117 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
118 |
+
minimum=0,
|
119 |
+
maximum=50,
|
120 |
+
step=0.1,
|
121 |
+
value=6)
|
122 |
+
eta = gr.Slider(label='DDIM eta',
|
123 |
+
minimum=0,
|
124 |
+
maximum=1.,
|
125 |
+
step=0.1,
|
126 |
+
value=1.)
|
127 |
+
batch_size = gr.Slider(label='Batch Size',
|
128 |
+
minimum=0,
|
129 |
+
maximum=10.,
|
130 |
+
step=1,
|
131 |
+
value=1)
|
132 |
+
|
133 |
+
run_button = gr.Button('Generate')
|
134 |
+
|
135 |
+
gr.Markdown('''
|
136 |
+
- Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
|
137 |
+
- After training, you can press "Reload Weight List" button to load your trained model names.
|
138 |
+
- Increase number of steps in Other parameters for better samples qualitatively.
|
139 |
+
''')
|
140 |
+
with gr.Column():
|
141 |
+
result = gr.Image(label='Result')
|
142 |
+
|
143 |
+
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
144 |
+
inputs=None,
|
145 |
+
outputs=weight_name)
|
146 |
+
prompt.submit(fn=pipe.run,
|
147 |
+
inputs=[
|
148 |
+
base_model,
|
149 |
+
weight_name,
|
150 |
+
prompt,
|
151 |
+
seed,
|
152 |
+
num_steps,
|
153 |
+
guidance_scale,
|
154 |
+
eta,
|
155 |
+
batch_size,
|
156 |
+
resolution
|
157 |
+
],
|
158 |
+
outputs=result,
|
159 |
+
queue=False)
|
160 |
+
run_button.click(fn=pipe.run,
|
161 |
+
inputs=[
|
162 |
+
base_model,
|
163 |
+
weight_name,
|
164 |
+
prompt,
|
165 |
+
seed,
|
166 |
+
num_steps,
|
167 |
+
guidance_scale,
|
168 |
+
eta,
|
169 |
+
batch_size,
|
170 |
+
resolution
|
171 |
+
],
|
172 |
+
outputs=result,
|
173 |
+
queue=False)
|
174 |
+
return demo
|
175 |
+
|
176 |
+
|
177 |
+
pipe = InferencePipeline()
|
178 |
+
trainer = Trainer()
|
179 |
+
|
180 |
+
with gr.Blocks(css='style.css') as demo:
|
181 |
+
if os.getenv('IS_SHARED_UI'):
|
182 |
+
show_warning(SHARED_UI_WARNING)
|
183 |
+
if not torch.cuda.is_available():
|
184 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
185 |
+
|
186 |
+
gr.Markdown(TITLE)
|
187 |
+
gr.Markdown(DESCRIPTION)
|
188 |
+
gr.Markdown(DETAILDESCRIPTION)
|
189 |
+
|
190 |
+
with gr.Tabs():
|
191 |
+
# with gr.TabItem('Train'):
|
192 |
+
# create_training_demo(trainer, pipe)
|
193 |
+
with gr.TabItem('Inference'):
|
194 |
+
create_inference_demo(pipe)
|
195 |
+
# with gr.TabItem('Upload'):
|
196 |
+
# create_upload_demo()
|
197 |
+
|
198 |
+
demo.queue(default_enabled=False).launch(share=False)
|
199 |
+
|
inference.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
import sys
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import PIL.Image
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from diffusers import StableDiffusionPipeline
|
13 |
+
sys.path.insert(0, './ReVersion')
|
14 |
+
|
15 |
+
|
16 |
+
class InferencePipeline:
|
17 |
+
def __init__(self):
|
18 |
+
self.pipe = None
|
19 |
+
self.device = torch.device(
|
20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
21 |
+
self.weight_path = None
|
22 |
+
|
23 |
+
def clear(self) -> None:
|
24 |
+
self.weight_path = None
|
25 |
+
del self.pipe
|
26 |
+
self.pipe = None
|
27 |
+
torch.cuda.empty_cache()
|
28 |
+
gc.collect()
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def get_weight_path(name: str) -> pathlib.Path:
|
32 |
+
curr_dir = pathlib.Path(__file__).parent
|
33 |
+
return curr_dir / name
|
34 |
+
|
35 |
+
def load_pipe(self, model_id: str, filename: str) -> None:
|
36 |
+
weight_path = self.get_weight_path(filename)
|
37 |
+
if weight_path == self.weight_path:
|
38 |
+
return
|
39 |
+
self.weight_path = weight_path
|
40 |
+
weight = torch.load(self.weight_path, map_location=self.device)
|
41 |
+
|
42 |
+
if self.device.type == 'cpu':
|
43 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
44 |
+
else:
|
45 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
46 |
+
model_id, torch_dtype=torch.float16)
|
47 |
+
pipe = pipe.to(self.device)
|
48 |
+
|
49 |
+
from src import diffuser_training
|
50 |
+
diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, compress=False)
|
51 |
+
|
52 |
+
self.pipe = pipe
|
53 |
+
|
54 |
+
def run(
|
55 |
+
self,
|
56 |
+
base_model: str,
|
57 |
+
weight_name: str,
|
58 |
+
prompt: str,
|
59 |
+
seed: int,
|
60 |
+
n_steps: int,
|
61 |
+
guidance_scale: float,
|
62 |
+
eta: float,
|
63 |
+
batch_size: int,
|
64 |
+
resolution: int,
|
65 |
+
) -> PIL.Image.Image:
|
66 |
+
if not torch.cuda.is_available():
|
67 |
+
raise gr.Error('CUDA is not available.')
|
68 |
+
|
69 |
+
self.load_pipe(base_model, weight_name)
|
70 |
+
|
71 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
72 |
+
out = self.pipe([prompt]*batch_size,
|
73 |
+
num_inference_steps=n_steps,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
+
height=resolution, width=resolution,
|
76 |
+
eta = eta,
|
77 |
+
generator=generator) # type: ignore
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
out = out.images
|
80 |
+
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out]))
|
81 |
+
return out
|