from flask import Flask, render_template, request import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained( "cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, ) pipe.to('cpu') app = Flask(__name__) @app.route('/') def home(): return render_template('index.html') @app.route('/generate', methods=['POST']) def generate(): if request.method == 'POST': # Get text input from the form text = request.form['text'] # Generate image from text #image = text_to_image(text) prompt = text negative_prompt = "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]" image = pipe( prompt, negative_prompt=negative_prompt, width=832, height=1216, guidance_scale=7, num_inference_steps=28 ).images[0] image.save("./output/asuka_test.png") # Save the generated image (for simplicity, you can send it directly to the user) # You can save it to a temporary file or memory depending on your needs #image.save("static/generated_image.png") return render_template('index.html', generated=True) if __name__ == '__main__': app.run(debug=False)