Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import argparse | |
| import torch | |
| from torch.utils.data import DataLoader | |
| from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer | |
| from utils.drug_tokenizer import DrugTokenizer | |
| from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI | |
| from bertviz import head_view | |
| import tempfile | |
| from flask import Flask, request, render_template_string | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| sys.path.append("../") | |
| app = Flask(__name__) | |
| def parse_config(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('-f') | |
| parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located") | |
| parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model") | |
| parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}") | |
| parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}") | |
| parser.add_argument("--batch_size", type=int, default=64) | |
| parser.add_argument("--group_size", type=int, default=1) | |
| parser.add_argument("--lr", type=float, default=1e-4) | |
| parser.add_argument("--dropout", type=float, default=0.1) | |
| parser.add_argument("--test", type=int, default=0) | |
| parser.add_argument("--use_pooled", action="store_true", default=True) | |
| parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu") | |
| parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory") | |
| parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file") | |
| parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')") | |
| return parser.parse_args() | |
| args = parse_config() | |
| device = args.device | |
| prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path) | |
| drug_tokenizer = DrugTokenizer() | |
| prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path) | |
| drug_model = AutoModel.from_pretrained(args.drug_encoder_path) | |
| encoding = Pre_encoded(prot_model, drug_model, args).to(device) | |
| def get_case_feature(model, dataloader, device): | |
| with torch.no_grad(): | |
| for step, batch in enumerate(dataloader): | |
| prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch | |
| prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \ | |
| prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device) | |
| prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask) | |
| prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu() | |
| prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu() | |
| prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu() | |
| label = label.cpu() | |
| return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)] | |
| def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer): | |
| model.eval() | |
| with torch.no_grad(): | |
| for batch in case_features: | |
| prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch | |
| prot, drug = prot.to(device), drug.to(device) | |
| prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device) | |
| output, attention_weights = model(prot, drug, prot_mask, drug_mask) | |
| prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()] | |
| drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()] | |
| tokens = prot_tokens + drug_tokens | |
| attention_weights = attention_weights.unsqueeze(1) | |
| # Generate HTML content using head_view with html_action='return' | |
| html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return') | |
| # Parse the HTML and modify it to replace sentence labels | |
| html_content = html_head_view.data | |
| html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein") | |
| html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug") | |
| html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug") | |
| html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein") | |
| # Save the modified HTML content to a temporary file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f: | |
| f.write(html_content.encode('utf-8')) | |
| temp_file_path = f.name | |
| return temp_file_path | |
| def index(): | |
| protein_sequence = "" | |
| drug_sequence = "" | |
| result = None | |
| if request.method == 'POST': | |
| if 'clear' in request.form: | |
| protein_sequence = "" | |
| drug_sequence = "" | |
| else: | |
| protein_sequence = request.form['protein_sequence'] | |
| drug_sequence = request.form['drug_sequence'] | |
| dataset = [(protein_sequence, drug_sequence, 1)] | |
| dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding) | |
| case_features = get_case_feature(encoding, dataloader, device) | |
| model = FusionDTI(446, 768, args).to(device) | |
| best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}" | |
| checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt') | |
| if os.path.exists(checkpoint_path): | |
| model.load_state_dict(torch.load(checkpoint_path, map_location=device)) | |
| html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer) | |
| with open(html_file_path, 'r') as f: | |
| result = f.read() | |
| return render_template_string(''' | |
| <html> | |
| <head> | |
| <title>Drug Target Interaction Visualization</title> | |
| <style> | |
| body { font-family: 'Times New Roman', Times, serif; margin: 40px; } | |
| h2 { color: #333; } | |
| .container { display: flex; } | |
| .left { flex: 1; padding-right: 20px; } | |
| .right { flex: 1; } | |
| textarea { | |
| width: 100%; | |
| padding: 12px 20px; | |
| margin: 8px 0; | |
| display: inline-block; | |
| border: 1px solid #ccc; | |
| border-radius: 4px; | |
| box-sizing: border-box; | |
| font-size: 16px; | |
| font-family: 'Times New Roman', Times, serif; | |
| } | |
| .button-container { | |
| display: flex; | |
| justify-content: space-between; | |
| } | |
| input[type="submit"], .button { | |
| width: 48%; | |
| color: white; | |
| padding: 14px 20px; | |
| margin: 8px 0; | |
| border: none; | |
| border-radius: 4px; | |
| cursor: pointer; | |
| font-size: 16px; | |
| font-family: 'Times New Roman', Times, serif; | |
| } | |
| .submit { | |
| background-color: #FFA500; | |
| } | |
| .submit:hover { | |
| background-color: #FF8C00; | |
| } | |
| .clear { | |
| background-color: #D3D3D3; | |
| } | |
| .clear:hover { | |
| background-color: #A9A9A9; | |
| } | |
| .result { | |
| font-size: 18px; | |
| } | |
| </style> | |
| </head> | |
| <body> | |
| <h2 style="text-align: center;">Drug Target Interaction Visualization</h2> | |
| <div class="container"> | |
| <div class="left"> | |
| <form method="post"> | |
| <label for="protein_sequence">Protein Sequence:</label> | |
| <textarea id="protein_sequence" name="protein_sequence" rows="4" placeholder="Enter protein sequence here..." required>{{ protein_sequence }}</textarea><br> | |
| <label for="drug_sequence">Drug Sequence:</label> | |
| <textarea id="drug_sequence" name="drug_sequence" rows="4" placeholder="Enter drug sequence here..." required>{{ drug_sequence }}</textarea><br> | |
| <div class="button-container"> | |
| <input type="submit" name="submit" class="button submit" value="Submit"> | |
| <input type="submit" name="clear" class="button clear" value="Clear"> | |
| </div> | |
| </form> | |
| </div> | |
| <div class="right" style="display: flex; justify-content: center; align-items: center;"> | |
| {% if result %} | |
| <div class="result"> | |
| {{ result|safe }} | |
| </div> | |
| {% endif %} | |
| </div> | |
| </div> | |
| </body> | |
| </html> | |
| ''', protein_sequence=protein_sequence, drug_sequence=drug_sequence, result=result) | |
| def collate_fn_batch_encoding(batch): | |
| query1, query2, scores = zip(*batch) | |
| query_encodings1 = prot_tokenizer.batch_encode_plus( | |
| list(query1), | |
| max_length=512, | |
| padding="max_length", | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| query_encodings2 = drug_tokenizer.batch_encode_plus( | |
| list(query2), | |
| max_length=512, | |
| padding="max_length", | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| scores = torch.tensor(list(scores)) | |
| attention_mask1 = query_encodings1["attention_mask"].bool() | |
| attention_mask2 = query_encodings2["attention_mask"].bool() | |
| return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores | |
| if __name__ == '__main__': | |
| app.run(debug=True, host='127.0.0.1', port=7860) |