File size: 7,390 Bytes
7b50396
 
 
 
8f76168
 
 
 
7b50396
 
 
 
 
 
 
 
8f76168
7b50396
 
 
 
 
 
 
 
 
 
 
 
 
8f76168
 
 
 
 
 
 
 
7b50396
 
 
8f76168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b50396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f76168
 
 
 
 
 
 
 
 
 
 
 
 
7b50396
8f76168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b50396
 
8f76168
 
 
7b50396
 
8f76168
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, StableDiffusionXLBaseModel, StableDiffusionTrainer
from transformers import CLIPTextModel, CLIPTokenizer, TrainingArguments
from datasets import load_dataset
from huggingface_hub import HfApi, HfFolder, Repository

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else:
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0]
    
    return image

def get_latest_version(repo_id):
    api = HfApi()
    repo_info = api.repo_info(repo_id)
    versions = [tag.name for tag in repo_info.tags]
    if not versions:
        return "v_0.0"
    latest_version = sorted(versions)[-1]
    return latest_version

def increment_version(version):
    major, minor = map(int, version.split('_')[1:])
    minor += 1
    return f"v_{major}.{minor}"

def train_model(train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate):
    tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
    text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

    base_model = StableDiffusionXLBaseModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")

    dataset = load_dataset('imagefolder', data_dir=train_data_path)

    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_train_epochs,
        per_device_train_batch_size=per_device_train_batch_size,
        learning_rate=learning_rate,
        logging_dir="./logs",
        logging_steps=10,
    )

    trainer = StableDiffusionTrainer(
        model=base_model,
        args=training_args,
        train_dataset=dataset['train'],
        tokenizer=tokenizer,
    )

    trainer.train()
    base_model.save_pretrained(output_dir)

    # Publish the model
    repo_id = "ZennyKenny/stable-diffusion-xl-base-1.0_NatalieDiffusion"
    latest_version = get_latest_version(repo_id)
    new_version = increment_version(latest_version)

    api = HfApi()
    token = HfFolder.get_token()
    repo = Repository(output_dir, clone_from=repo_id, token=token)
    repo.git_tag(new_version)
    repo.push_tag(new_version)
    
    return f"Training complete. Model saved to {output_dir} and published as version {new_version}."

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )
        
        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )
    
    # Add new section for training the model
    with gr.Accordion("Training Settings", open=False):
        train_data_path = gr.Text(
            label="Training Data Path",
            placeholder="Enter the path to your training data",
        )
        output_dir = gr.Text(
            label="Output Directory",
            placeholder="Enter the output directory for the trained model",
        )
        num_train_epochs = gr.Slider(
            label="Number of Training Epochs",
            minimum=1,
            maximum=10,
            step=1,
            value=3,
        )
        per_device_train_batch_size = gr.Slider(
            label="Batch Size per Device",
            minimum=1,
            maximum=16,
            step=1,
            value=4,
        )
        learning_rate = gr.Slider(
            label="Learning Rate",
            minimum=1e-5,
            maximum=1e-3,
            step=1e-5,
            value=5e-5,
        )
        train_button = gr.Button("Train Model")
        train_result = gr.Text(label="Training Result", show_label=False)

    train_button.click(
        fn=train_model,
        inputs=[train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate],
        outputs=[train_result],
    )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()