Spaces:
Running
Running
| # Gradio YOLOv8 Det v0.2.2 | |
| # 创建人:曾逸夫 | |
| # 创建时间:2023-01-23 | |
| import argparse | |
| import csv | |
| import os | |
| import sys | |
| from ultralytics import YOLO | |
| csv.field_size_limit(sys.maxsize) | |
| import gc | |
| import json | |
| import random | |
| import shutil | |
| from collections import Counter | |
| from pathlib import Path | |
| import cv2 | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| import plotly.express as px | |
| from matplotlib import font_manager | |
| ROOT_PATH = sys.path[0] # 项目根目录 | |
| # --------------------- 字体库 --------------------- | |
| SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径 | |
| TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径 | |
| # 宋体 | |
| SimSun = font_manager.FontProperties(fname=SimSun_path, size=12) | |
| # 新罗马字体 | |
| TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12) | |
| import torch | |
| import yaml | |
| from PIL import Image, ImageDraw, ImageFont | |
| from util.fonts_opt import is_fonts | |
| ROOT_PATH = sys.path[0] # 根目录 | |
| # Gradio YOLOv8 Det版本 | |
| GYD_VERSION = "Gradio YOLOv8 Det v0.2.2" | |
| # 文件后缀 | |
| suffix_list = [".csv", ".yaml"] | |
| # 字体大小 | |
| FONTSIZE = 25 | |
| # 目标尺寸 | |
| obj_style = ["小目标", "中目标", "大目标"] | |
| def parse_args(known=False): | |
| parser = argparse.ArgumentParser(description="Gradio YOLOv8 Det v0.2.2") | |
| parser.add_argument("--model_type", "-mt", default="online", type=str, help="model type") | |
| parser.add_argument("--source", "-src", default="upload", type=str, help="image input source") | |
| parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source") | |
| parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool") | |
| parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name") | |
| parser.add_argument( | |
| "--model_cfg", | |
| "-mc", | |
| default="./model_config/model_name_p5_all.yaml", | |
| type=str, | |
| help="model config", | |
| ) | |
| parser.add_argument( | |
| "--cls_name", | |
| "-cls", | |
| default="./cls_name/cls_name_zh.yaml", | |
| type=str, | |
| help="cls name", | |
| ) | |
| parser.add_argument( | |
| "--nms_conf", | |
| "-conf", | |
| default=0.5, | |
| type=float, | |
| help="model NMS confidence threshold", | |
| ) | |
| parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold") | |
| parser.add_argument( | |
| "--device", | |
| "-dev", | |
| default="cuda:0", | |
| type=str, | |
| help="cuda or cpu", | |
| ) | |
| parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") | |
| parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num") | |
| parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step") | |
| parser.add_argument( | |
| "--is_login", | |
| "-isl", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument('--usr_pwd', | |
| "-up", | |
| nargs='+', | |
| type=str, | |
| default=["admin", "admin"], | |
| help="user & password for login") | |
| parser.add_argument( | |
| "--is_share", | |
| "-is", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument("--server_port", "-sp", default=7861, type=int, help="server port") | |
| args = parser.parse_known_args()[0] if known else parser.parse_args() | |
| return args | |
| # yaml文件解析 | |
| def yaml_parse(file_path): | |
| return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
| # yaml csv 文件解析 | |
| def yaml_csv(file_path, file_tag): | |
| file_suffix = Path(file_path).suffix | |
| if file_suffix == suffix_list[0]: | |
| # 模型名称 | |
| file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版 | |
| elif file_suffix == suffix_list[1]: | |
| # 模型名称 | |
| file_names = yaml_parse(file_path).get(file_tag) # yaml版 | |
| else: | |
| print(f"{file_path}格式不正确!程序退出!") | |
| sys.exit() | |
| return file_names | |
| # 检查网络连接 | |
| def check_online(): | |
| # 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py | |
| # Check internet connectivity | |
| import socket | |
| try: | |
| socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility | |
| return True | |
| except OSError: | |
| return False | |
| # 模型加载 | |
| def model_loading(img_path, conf, iou, infer_size, yolo_model="yolov8n.pt"): | |
| model = YOLO(yolo_model) | |
| results = model(source=img_path, imgsz=infer_size, conf=conf, iou=iou) | |
| results = list(results)[0] | |
| return results | |
| # 标签和边界框颜色设置 | |
| def color_set(cls_num): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = tuple(np.random.choice(range(256), size=3)) | |
| # color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])] | |
| color_list.append(color) | |
| return color_list | |
| # 随机生成浅色系或者深色系 | |
| def random_color(cls_num, is_light=True): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = ( | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| ) | |
| color_list.append(color) | |
| return color_list | |
| # 检测绘制 | |
| def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list): | |
| img_pil = ImageDraw.Draw(img) | |
| id = 0 | |
| for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l): | |
| img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框 | |
| countdown_msg = f"{id}-{label} {score:.2f}" | |
| text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 | |
| # 标签背景 | |
| img_pil.rectangle( | |
| (xmin, ymin, xmin + text_w, ymin + text_h), | |
| fill=color_list[cls_index], | |
| outline=color_list[cls_index], | |
| ) | |
| # 标签 | |
| img_pil.multiline_text( | |
| (xmin, ymin), | |
| countdown_msg, | |
| fill=(0, 0, 0), | |
| font=textFont, | |
| align="center", | |
| ) | |
| id += 1 | |
| return img | |
| # 绘制多边形 | |
| def polygon_drawing(img_mask, canvas, color_seg): | |
| # ------- RGB转BGR ------- | |
| color_seg = list(color_seg) | |
| color_seg[0], color_seg[2] = color_seg[2], color_seg[0] | |
| color_seg = tuple(color_seg) | |
| # 定义多边形的顶点 | |
| pts = np.array(img_mask, dtype=np.int32) | |
| # 多边形绘制 | |
| cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1) | |
| # 输出分割结果 | |
| def seg_output(img_path, seg_mask_list, color_list, cls_list): | |
| img = cv2.imread(img_path) | |
| img_c = img.copy() | |
| w, h = img.shape[1], img.shape[0] | |
| # 获取分割坐标 | |
| for seg_mask, cls_index in zip(seg_mask_list, cls_list): | |
| img_mask = [] | |
| for i in range(len(seg_mask)): | |
| img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h]) | |
| polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形 | |
| img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像 | |
| return img_mask_merge | |
| # YOLOv5图片检测函数 | |
| def yolo_det_img(img_path, model_name, infer_size, conf, iou): | |
| global model, model_name_tmp, device_tmp | |
| s_obj, m_obj, l_obj = 0, 0, 0 | |
| area_obj_all = [] # 目标面积 | |
| score_det_stat = [] # 置信度统计 | |
| bbox_det_stat = [] # 边界框统计 | |
| cls_det_stat = [] # 类别数量统计 | |
| cls_index_det_stat = [] # 类别索引统计 | |
| # 模型加载 | |
| predict_results = model_loading(img_path, conf, iou, infer_size, yolo_model=f"{model_name}.pt") | |
| # 检测参数 | |
| xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist() | |
| conf_list = predict_results.boxes.conf.cpu().numpy().tolist() | |
| cls_list = predict_results.boxes.cls.cpu().numpy().tolist() | |
| # 颜色列表 | |
| color_list = random_color(len(model_cls_name_cp), True) | |
| # 图像分割 | |
| if (model_name[-3:] == "seg"): | |
| masks_list = predict_results.masks.segments | |
| img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list) | |
| img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA)) | |
| else: | |
| img = Image.open(img_path) | |
| # 判断检测对象是否为空 | |
| if (xyxy_list != []): | |
| # ---------------- 加载字体 ---------------- | |
| yaml_index = cls_name.index(".yaml") | |
| cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
| if cls_name_lang == "zh": | |
| # 中文 | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
| elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
| # 英文、俄语、西班牙语、阿拉伯语 | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
| elif cls_name_lang == "ko": | |
| # 韩语 | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
| for i in range(len(xyxy_list)): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| # ------------ 边框坐标 ------------ | |
| x0 = int(xyxy_list[i][0]) | |
| y0 = int(xyxy_list[i][1]) | |
| x1 = int(xyxy_list[i][2]) | |
| y1 = int(xyxy_list[i][3]) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| # ---------- 加入目标尺寸 ---------- | |
| w_obj = x1 - x0 | |
| h_obj = y1 - y0 | |
| area_obj = w_obj * h_obj | |
| area_obj_all.append(area_obj) | |
| det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list) | |
| # -------------- 目标尺寸计算 -------------- | |
| for i in range(len(area_obj_all)): | |
| if (0 < area_obj_all[i] <= 32 ** 2): | |
| s_obj = s_obj + 1 | |
| elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
| m_obj = m_obj + 1 | |
| elif (area_obj_all[i] > 96 ** 2): | |
| l_obj = l_obj + 1 | |
| sml_obj_total = s_obj + m_obj + l_obj | |
| objSize_dict = {} | |
| objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)} | |
| # ------------ 类别统计 ------------ | |
| clsRatio_dict = {} | |
| clsDet_dict = Counter(cls_det_stat) | |
| clsDet_dict_sum = sum(clsDet_dict.values()) | |
| for k, v in clsDet_dict.items(): | |
| clsRatio_dict[k] = v / clsDet_dict_sum | |
| return det_img, objSize_dict, clsRatio_dict | |
| else: | |
| print("图片目标不存在!") | |
| return None, None, None | |
| def main(args): | |
| gr.close_all() | |
| global model_cls_name_cp, cls_name | |
| source = args.source | |
| img_tool = args.img_tool | |
| nms_conf = args.nms_conf | |
| nms_iou = args.nms_iou | |
| model_name = args.model_name | |
| model_cfg = args.model_cfg | |
| cls_name = args.cls_name | |
| inference_size = args.inference_size | |
| slider_step = args.slider_step | |
| is_share = args.is_share | |
| is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件 | |
| model_names = yaml_csv(model_cfg, "model_names") # 模型名称 | |
| model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称 | |
| model_cls_name_cp = model_cls_name.copy() # 类别名称 | |
| # ------------------- 图片模式输入组件 ------------------- | |
| inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="filepath", label="原始图片") | |
| inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型") | |
| inputs_size01 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸") | |
| input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值") | |
| inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值") | |
| # ------------------- 图片模式输入参数 ------------------- | |
| inputs_img_list = [ | |
| inputs_img, # 输入图片 | |
| inputs_model01, # 模型 | |
| inputs_size01, # 推理尺寸 | |
| input_conf01, # 置信度阈值 | |
| inputs_iou01, # IoU阈值 | |
| ] | |
| # ------------------- 图片模式输出组件 ------------------- | |
| outputs_img = gr.Image(type="pil", label="检测图片") | |
| outputs_objSize = gr.Label(label="目标尺寸占比统计") | |
| outputs_clsSize = gr.Label(label="类别检测占比统计") | |
| # ------------------- 图片模式输出参数 ------------------- | |
| outputs_img_list = [outputs_img, outputs_objSize, outputs_clsSize] | |
| # 标题 | |
| title = "Gradio YOLOv8 Det" | |
| # 描述 | |
| description = "<div align='center'>Object detection and image segmentation system based on YOLOv8</div><div align='center'>Author: 曾逸夫(Zeng Yifu), Github: https://github.com/Zengyf-CVer, thanks to [Gradio](https://github.com/gradio-app/gradio) & [YOLOv8](https://github.com/ultralytics/ultralytics)</div>" | |
| # 示例图片 | |
| examples_imgs = [ | |
| [ | |
| "./img_examples/bus.jpg", | |
| "yolov8s", | |
| 640, | |
| 0.6, | |
| 0.5,], | |
| [ | |
| "./img_examples/giraffe.jpg", | |
| "yolov8l", | |
| 320, | |
| 0.5, | |
| 0.45,], | |
| [ | |
| "./img_examples/zidane.jpg", | |
| "yolov8m", | |
| 640, | |
| 0.6, | |
| 0.5,], | |
| [ | |
| "./img_examples/Millenial-at-work.jpg", | |
| "yolov8x", | |
| 1280, | |
| 0.5, | |
| 0.5,], | |
| [ | |
| "./img_examples/bus.jpg", | |
| "yolov8s-seg", | |
| 640, | |
| 0.6, | |
| 0.5,], | |
| [ | |
| "./img_examples/Millenial-at-work.jpg", | |
| "yolov8x-seg", | |
| 1280, | |
| 0.5, | |
| 0.5,],] | |
| # 接口 | |
| gyd_img = gr.Interface( | |
| fn=yolo_det_img, | |
| inputs=inputs_img_list, | |
| outputs=outputs_img_list, | |
| title=title, | |
| description=description, | |
| examples=examples_imgs, | |
| cache_examples=False, | |
| flagging_dir="run", # 输出目录 | |
| allow_flagging="manual", | |
| flagging_options=["good", "generally", "bad"], | |
| ) | |
| gyd_img.launch( | |
| inbrowser=True, # 自动打开默认浏览器 | |
| show_tips=True, # 自动显示gradio最新功能 | |
| share=is_share, # 项目共享,其他设备可以访问 | |
| favicon_path="./icon/logo.ico", # 网页图标 | |
| show_error=True, # 在浏览器控制台中显示错误信息 | |
| quiet=True, # 禁止大多数打印语句 | |
| ) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |