Spaces:
Running
Running
| # Gradio YOLOv8 Det v1.3.1 | |
| # 创建人:曾逸夫 | |
| # 创建时间:2024-01-03 | |
| # pip install gradio>=4.12.0 | |
| # python gradio_yolov8_det_v1.py | |
| import __init__ | |
| import argparse | |
| import csv | |
| import random | |
| import sys | |
| from collections import Counter | |
| from pathlib import Path | |
| import cv2 | |
| import gradio as gr | |
| from gradio_imageslider import ImageSlider | |
| import tempfile | |
| import uuid | |
| import numpy as np | |
| from matplotlib import font_manager | |
| from ultralytics import YOLO | |
| ROOT_PATH = sys.path[0] # 项目根目录 | |
| # --------------------- 字体库 --------------------- | |
| SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径 | |
| TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径 | |
| # 宋体 | |
| SimSun = font_manager.FontProperties(fname=SimSun_path, size=12) | |
| # 新罗马字体 | |
| TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12) | |
| import yaml | |
| from PIL import Image, ImageDraw, ImageFont | |
| from util.fonts_opt import is_fonts | |
| # 文件后缀 | |
| suffix_list = [".csv", ".yaml"] | |
| # 字体大小 | |
| FONTSIZE = 25 | |
| # 目标尺寸 | |
| obj_style = ["小目标", "中目标", "大目标"] | |
| GYD_TITLE = """ | |
| <p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'> | |
| <img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a> | |
| <p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p> | |
| </p> | |
| <p align='center'> | |
| <a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a> | |
| </p> | |
| """ | |
| GYD_SUB_TITLE = """ | |
| 作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer | |
| """ | |
| EXAMPLES_DET = [ | |
| ["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"], | |
| ["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, [], "所有尺寸"], | |
| ["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"], | |
| [ | |
| "./img_examples/Millenial-at-work.jpg", | |
| "yolov8x", | |
| "cpu", | |
| 1280, | |
| 0.5, | |
| 0.5, | |
| 100, | |
| [], | |
| "所有尺寸", | |
| ], | |
| ["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"], | |
| [ | |
| "./img_examples/Millenial-at-work.jpg", | |
| "yolov8x-seg", | |
| "cpu", | |
| 1280, | |
| 0.5, | |
| 0.5, | |
| 100, | |
| [], | |
| "所有尺寸", | |
| ], | |
| ] | |
| EXAMPLES_CLAS = [ | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "cpu", "yolov8s-cls"], | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "cpu", "yolov8l-cls"], | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "cpu", "yolov8m-cls"], | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "cpu", "yolov8m-cls"], | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "cpu", "yolov8m-cls"], | |
| ["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "cpu", "yolov8m-cls"], | |
| ] | |
| GYD_CSS = """#disp_image { | |
| text-align: center; /* Horizontally center the content */ | |
| }""" | |
| custom_css = "./gyd_style.css" | |
| def parse_args(known=False): | |
| parser = argparse.ArgumentParser(description=__init__.__version__) | |
| parser.add_argument( | |
| "--model_name", "-mn", default="yolov8s", type=str, help="model name" | |
| ) | |
| parser.add_argument( | |
| "--model_cfg", | |
| "-mc", | |
| default="./model_config/model_name_all.yaml", | |
| type=str, | |
| help="model config", | |
| ) | |
| parser.add_argument( | |
| "--cls_name", | |
| "-cls", | |
| default="./cls_name/cls_name_zh.yaml", | |
| type=str, | |
| help="cls name", | |
| ) | |
| parser.add_argument( | |
| "--cls_imgnet_name", | |
| "-cin", | |
| default="./cls_name/cls_imagenet_name_zh.yaml", | |
| type=str, | |
| help="cls ImageNet name", | |
| ) | |
| parser.add_argument( | |
| "--nms_conf", | |
| "-conf", | |
| default=0.5, | |
| type=float, | |
| help="model NMS confidence threshold", | |
| ) | |
| parser.add_argument( | |
| "--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold" | |
| ) | |
| parser.add_argument( | |
| "--inference_size", "-isz", default=640, type=int, help="model inference size" | |
| ) | |
| parser.add_argument( | |
| "--max_detnum", "-mdn", default=50, type=float, help="model max det num" | |
| ) | |
| parser.add_argument( | |
| "--slider_step", "-ss", default=0.05, type=float, help="slider step" | |
| ) | |
| parser.add_argument( | |
| "--is_login", | |
| "-isl", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument( | |
| "--usr_pwd", | |
| "-up", | |
| nargs="+", | |
| type=str, | |
| default=["admin", "admin"], | |
| help="user & password for login", | |
| ) | |
| parser.add_argument( | |
| "--is_share", | |
| "-is", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument( | |
| "--server_port", "-sp", default=7860, type=int, help="server port" | |
| ) | |
| args = parser.parse_known_args()[0] if known else parser.parse_args() | |
| return args | |
| # yaml文件解析 | |
| def yaml_parse(file_path): | |
| return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
| # yaml csv 文件解析 | |
| def yaml_csv(file_path, file_tag): | |
| file_suffix = Path(file_path).suffix | |
| if file_suffix == suffix_list[0]: | |
| # 模型名称 | |
| file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版 | |
| elif file_suffix == suffix_list[1]: | |
| # 模型名称 | |
| file_names = yaml_parse(file_path).get(file_tag) # yaml版 | |
| else: | |
| print(f"{file_path}格式不正确!程序退出!") | |
| sys.exit() | |
| return file_names | |
| # 检查网络连接 | |
| def check_online(): | |
| # 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py | |
| # Check internet connectivity | |
| import socket | |
| try: | |
| socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility | |
| return True | |
| except OSError: | |
| return False | |
| # 标签和边界框颜色设置 | |
| def color_set(cls_num): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = tuple(np.random.choice(range(256), size=3)) | |
| color_list.append(color) | |
| return color_list | |
| # 随机生成浅色系或者深色系 | |
| def random_color(cls_num, is_light=True): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = ( | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| ) | |
| color_list.append(color) | |
| return color_list | |
| # 检测绘制 | |
| def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list): | |
| img_pil = ImageDraw.Draw(img) | |
| id = 0 | |
| for score, (xmin, ymin, xmax, ymax), label, cls_index in zip( | |
| score_l, bbox_l, cls_l, cls_index_l | |
| ): | |
| img_pil.rectangle( | |
| [xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2 | |
| ) # 边界框 | |
| countdown_msg = f"{id}-{label} {score:.2f}" | |
| # text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0 | |
| # left, top, left + width, top + height | |
| # 标签尺寸 pillow 10.0.0 | |
| text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg) | |
| # 标签背景 | |
| img_pil.rectangle( | |
| # (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0 | |
| ( | |
| xmin, | |
| ymin, | |
| xmin + text_xmax - text_xmin, | |
| ymin + text_ymax - text_ymin, | |
| ), # pillow 10.0.0 | |
| fill=color_list[cls_index], | |
| outline=color_list[cls_index], | |
| ) | |
| # 标签 | |
| img_pil.multiline_text( | |
| (xmin, ymin), | |
| countdown_msg, | |
| fill=(0, 0, 0), | |
| font=textFont, | |
| align="center", | |
| ) | |
| id += 1 | |
| return img | |
| # 绘制多边形 | |
| def polygon_drawing(img_mask, canvas, color_seg): | |
| # ------- RGB转BGR ------- | |
| color_seg = list(color_seg) | |
| color_seg[0], color_seg[2] = color_seg[2], color_seg[0] | |
| color_seg = tuple(color_seg) | |
| # 定义多边形的顶点 | |
| pts = np.array(img_mask, dtype=np.int32) | |
| # 多边形绘制 | |
| cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1) | |
| # 输出分割结果 | |
| def seg_output(img_path, seg_mask_list, color_list, cls_list): | |
| img = cv2.imread(img_path) | |
| img_c = img.copy() | |
| # w, h = img.shape[1], img.shape[0] | |
| # 获取分割坐标 | |
| for seg_mask, cls_index in zip(seg_mask_list, cls_list): | |
| img_mask = [] | |
| for i in range(len(seg_mask)): | |
| # img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h]) | |
| img_mask.append([seg_mask[i][0], seg_mask[i][1]]) | |
| polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形 | |
| img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像 | |
| return img_mask_merge | |
| # 目标检测和图像分割模型加载 | |
| def model_det_loading( | |
| img_path, | |
| device_opt, | |
| conf, | |
| iou, | |
| infer_size, | |
| max_det, | |
| inputs_cls_name, | |
| yolo_model="yolov8n.pt", | |
| ): | |
| model = YOLO(yolo_model) | |
| if inputs_cls_name == []: | |
| inputs_cls_name = None | |
| results = model( | |
| source=img_path, | |
| device=device_opt, | |
| imgsz=infer_size, | |
| conf=conf, | |
| iou=iou, | |
| classes=inputs_cls_name, | |
| max_det=max_det, | |
| ) | |
| results = list(results)[0] | |
| return results | |
| # 图像分类模型加载 | |
| def model_cls_loading(img_path, device_opt, yolo_model="yolov8s-cls.pt"): | |
| model = YOLO(yolo_model) | |
| results = model(source=img_path, device=device_opt) | |
| results = list(results)[0] | |
| return results | |
| # YOLOv8图片检测函数 | |
| def yolo_det_img( | |
| img_path, | |
| model_name, | |
| device_opt, | |
| infer_size, | |
| conf, | |
| iou, | |
| max_det, | |
| inputs_cls_name, | |
| obj_size, | |
| ): | |
| global model, model_name_tmp, device_tmp | |
| s_obj, m_obj, l_obj = 0, 0, 0 | |
| area_obj_all = [] # 目标面积 | |
| score_det_stat = [] # 置信度统计 | |
| bbox_det_stat = [] # 边界框统计 | |
| cls_det_stat = [] # 类别数量统计 | |
| cls_index_det_stat = [] # 1 | |
| # 模型加载 | |
| predict_results = model_det_loading( | |
| img_path, | |
| device_opt, | |
| conf, | |
| iou, | |
| infer_size, | |
| max_det, | |
| inputs_cls_name, | |
| yolo_model=f"{model_name}.pt", | |
| ) | |
| # 检测参数 | |
| xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist() | |
| conf_list = predict_results.boxes.conf.cpu().numpy().tolist() | |
| cls_list = predict_results.boxes.cls.cpu().numpy().tolist() | |
| # 颜色列表 | |
| color_list = random_color(len(model_cls_name_cp), True) | |
| img = Image.open(img_path) | |
| img_cp = img.copy() | |
| # 图像分割 | |
| if model_name[-3:] == "seg": | |
| # masks_list = predict_results.masks.xyn | |
| masks_list = predict_results.masks.xy | |
| img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list) | |
| img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGB)) | |
| # 判断检测对象是否为空 | |
| if xyxy_list != []: | |
| # ---------------- 加载字体 ---------------- | |
| yaml_index = cls_name.index(".yaml") | |
| cls_name_lang = cls_name[yaml_index - 2 : yaml_index] | |
| if cls_name_lang == "zh": | |
| # 中文 | |
| textFont = ImageFont.truetype( | |
| str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE | |
| ) | |
| elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
| # 英文、俄语、西班牙语、阿拉伯语 | |
| textFont = ImageFont.truetype( | |
| str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE | |
| ) | |
| elif cls_name_lang == "ko": | |
| # 韩语 | |
| textFont = ImageFont.truetype( | |
| str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE | |
| ) | |
| for i in range(len(xyxy_list)): | |
| # ------------ 边框坐标 ------------ | |
| x0 = int(xyxy_list[i][0]) | |
| y0 = int(xyxy_list[i][1]) | |
| x1 = int(xyxy_list[i][2]) | |
| y1 = int(xyxy_list[i][3]) | |
| # ---------- 加入目标尺寸 ---------- | |
| w_obj = x1 - x0 | |
| h_obj = y1 - y0 | |
| area_obj = w_obj * h_obj # 目标尺寸 | |
| if obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32**2: | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif ( | |
| obj_size == obj_style[1] and area_obj > 32**2 and area_obj <= 96**2 | |
| ): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif obj_size == obj_style[2] and area_obj > 96**2: | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif obj_size == "所有尺寸": | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| det_img = pil_draw( | |
| img, | |
| score_det_stat, | |
| bbox_det_stat, | |
| cls_det_stat, | |
| cls_index_det_stat, | |
| textFont, | |
| color_list, | |
| ) | |
| # -------------- 目标尺寸计算 -------------- | |
| for i in range(len(area_obj_all)): | |
| if 0 < area_obj_all[i] <= 32**2: | |
| s_obj = s_obj + 1 | |
| elif 32**2 < area_obj_all[i] <= 96**2: | |
| m_obj = m_obj + 1 | |
| elif area_obj_all[i] > 96**2: | |
| l_obj = l_obj + 1 | |
| sml_obj_total = s_obj + m_obj + l_obj | |
| objSize_dict = {} | |
| objSize_dict = { | |
| obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3) | |
| } | |
| # ------------ 类别统计 ------------ | |
| clsRatio_dict = {} | |
| clsDet_dict = Counter(cls_det_stat) | |
| clsDet_dict_sum = sum(clsDet_dict.values()) | |
| for k, v in clsDet_dict.items(): | |
| clsRatio_dict[k] = v / clsDet_dict_sum | |
| images = (det_img, img_cp) | |
| images_names = ("det", "raw") | |
| images_path = tempfile.mkdtemp() | |
| images_paths = [] | |
| uuid_name = uuid.uuid4() | |
| for image, image_name in zip(images, images_names): | |
| image.save(images_path + f"/img_{uuid_name}_{image_name}.jpg") | |
| images_paths.append(images_path + f"/img_{uuid_name}_{image_name}.jpg") | |
| gr.Info("图片检测成功!") | |
| return (det_img, img_cp), images_paths, objSize_dict, clsRatio_dict | |
| else: | |
| raise gr.Error("图片检测失败!") | |
| # YOLOv8图片分类函数 | |
| def yolo_cls_img(img_path, device_opt, model_name): | |
| # 模型加载 | |
| predict_results = model_cls_loading( | |
| img_path, device_opt, yolo_model=f"{model_name}.pt" | |
| ) | |
| det_img = Image.open(img_path) | |
| clas_ratio_list = predict_results.probs.top5conf.tolist() | |
| clas_index_list = predict_results.probs.top5 | |
| clas_name_list = [] | |
| for i in clas_index_list: | |
| # clas_name_list.append(predict_results.names[i]) | |
| clas_name_list.append(model_cls_imagenet_name_cp[i]) | |
| clsRatio_dict = {} | |
| index_cls = 0 | |
| clsDet_dict = Counter(clas_name_list) | |
| for k, v in clsDet_dict.items(): | |
| clsRatio_dict[k] = clas_ratio_list[index_cls] | |
| index_cls += 1 | |
| return det_img, clsRatio_dict | |
| def main(args): | |
| gr.close_all() | |
| global model_cls_name_cp, model_cls_imagenet_name_cp, cls_name | |
| nms_conf = args.nms_conf | |
| nms_iou = args.nms_iou | |
| model_name = args.model_name | |
| model_cfg = args.model_cfg | |
| cls_name = args.cls_name | |
| cls_imagenet_name = args.cls_imgnet_name # ImageNet类别 | |
| inference_size = args.inference_size | |
| max_detnum = args.max_detnum | |
| slider_step = args.slider_step | |
| is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件 | |
| model_names = yaml_csv(model_cfg, "model_names") # 模型名称 | |
| model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称 | |
| model_cls_imagenet_name = yaml_csv(cls_imagenet_name, "model_cls_name") # 类别名称 | |
| model_cls_name_cp = model_cls_name.copy() # 类别名称 | |
| model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称 | |
| custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
| button_secondary_background_fill="*neutral_100", | |
| button_secondary_background_fill_hover="*neutral_200", | |
| ) | |
| # ------------ Gradio Blocks ------------ | |
| with gr.Blocks(theme=custom_theme, css=custom_css) as gyd: | |
| with gr.Row(): | |
| gr.Markdown(GYD_TITLE) | |
| with gr.Row(): | |
| gr.Markdown(GYD_SUB_TITLE) | |
| with gr.Row(): | |
| with gr.Tabs(): | |
| with gr.TabItem("目标检测与图像分割"): | |
| with gr.Row(): | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| inputs_img = gr.Image( | |
| image_mode="RGB", type="filepath", label="原始图片" | |
| ) | |
| with gr.Row(): | |
| device_opt = gr.Radio( | |
| choices=["cpu", 0, 1, 2, 3], | |
| value="cpu", | |
| label="设备", | |
| ) | |
| with gr.Row(): | |
| inputs_model = gr.Dropdown( | |
| choices=model_names, | |
| value=model_name, | |
| type="value", | |
| label="模型", | |
| ) | |
| with gr.Accordion("高级设置", open=True): | |
| with gr.Row(): | |
| inputs_size = gr.Slider( | |
| 320, | |
| 1600, | |
| step=1, | |
| value=inference_size, | |
| label="推理尺寸", | |
| ) | |
| max_det = gr.Slider( | |
| 1, | |
| 1000, | |
| step=1, | |
| value=max_detnum, | |
| label="最大检测数", | |
| ) | |
| with gr.Row(): | |
| input_conf = gr.Slider( | |
| 0, | |
| 1, | |
| step=slider_step, | |
| value=nms_conf, | |
| label="置信度阈值", | |
| ) | |
| inputs_iou = gr.Slider( | |
| 0, | |
| 1, | |
| step=slider_step, | |
| value=nms_iou, | |
| label="IoU 阈值", | |
| ) | |
| with gr.Row(): | |
| inputs_cls_name = gr.Dropdown( | |
| choices=model_cls_name_cp, | |
| value=[], | |
| multiselect=True, | |
| allow_custom_value=True, | |
| type="index", | |
| label="类别选择", | |
| ) | |
| with gr.Row(): | |
| obj_size = gr.Radio( | |
| choices=["所有尺寸", "小目标", "中目标", "大目标"], | |
| value="所有尺寸", | |
| label="目标尺寸", | |
| ) | |
| with gr.Row(): | |
| gr.ClearButton(inputs_img, value="清除") | |
| det_btn_img = gr.Button( | |
| value="检测", variant="primary" | |
| ) | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Column(scale=1): | |
| # with gr.Row(): | |
| # outputs_img = gr.Image(type="pil", label="检测图片") | |
| with gr.Row(): | |
| outputs_img_slider = ImageSlider( | |
| position=0.5, label="检测图片" | |
| ) | |
| with gr.Row(): | |
| outputs_imgfiles = gr.Files(label="图片下载") | |
| with gr.Row(): | |
| outputs_objSize = gr.Label(label="目标尺寸占比统计") | |
| with gr.Row(): | |
| outputs_clsSize = gr.Label(label="类别检测占比统计") | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=EXAMPLES_DET, | |
| fn=yolo_det_img, | |
| inputs=[ | |
| inputs_img, | |
| inputs_model, | |
| device_opt, | |
| inputs_size, | |
| input_conf, | |
| inputs_iou, | |
| max_det, | |
| inputs_cls_name, | |
| obj_size, | |
| ], | |
| # outputs=[outputs_img, outputs_objSize, outputs_clsSize], | |
| cache_examples=False, | |
| ) | |
| with gr.TabItem("图像分类"): | |
| with gr.Row(): | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| inputs_img_cls = gr.Image( | |
| image_mode="RGB", type="filepath", label="原始图片" | |
| ) | |
| with gr.Row(): | |
| device_opt_cls = gr.Radio( | |
| choices=["cpu", "0", "1", "2", "3"], | |
| value="cpu", | |
| label="设备", | |
| ) | |
| with gr.Row(): | |
| inputs_model_cls = gr.Dropdown( | |
| choices=[ | |
| "yolov8n-cls", | |
| "yolov8s-cls", | |
| "yolov8l-cls", | |
| "yolov8m-cls", | |
| "yolov8x-cls", | |
| ], | |
| value="yolov8s-cls", | |
| type="value", | |
| label="模型", | |
| ) | |
| with gr.Row(): | |
| gr.ClearButton(inputs_img, value="清除") | |
| det_btn_img_cls = gr.Button( | |
| value="检测", variant="primary" | |
| ) | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| outputs_img_cls = gr.Image(type="pil", label="检测图片") | |
| with gr.Row(): | |
| outputs_ratio_cls = gr.Label(label="图像分类结果") | |
| with gr.Group(elem_id="show_box"): | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=EXAMPLES_CLAS, | |
| fn=yolo_cls_img, | |
| inputs=[ | |
| inputs_img_cls, | |
| device_opt_cls, | |
| inputs_model_cls, | |
| ], | |
| # outputs=[outputs_img_cls, outputs_ratio_cls], | |
| cache_examples=False, | |
| ) | |
| with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"): | |
| with gr.Group(elem_id="show_box"): | |
| gr.Markdown( | |
| """## Gradio YOLOv8 Det 安装与使用教程 | |
| ```shell | |
| conda create -n yolo python==3.8 | |
| conda activate yolo # 进入环境 | |
| git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git | |
| cd gradio-yolov8-det | |
| pip install -r ./requirements.txt -U | |
| ``` | |
| ```shell | |
| # 共享模式 | |
| python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/ | |
| # 自定义模型配置 | |
| python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml | |
| # 自定义下拉框默认模型名称 | |
| python gradio_yolov8_det_v1.py -mn yolov8m | |
| # 自定义类别名称 | |
| python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml (目标检测与图像分割) | |
| python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml (图像分类) | |
| # 自定义NMS置信度阈值 | |
| python gradio_yolov8_det_v1.py -conf 0.8 | |
| # 自定义NMS IoU阈值 | |
| python gradio_yolov8_det_v1.py -iou 0.5 | |
| # 设置推理尺寸,默认为640 | |
| python gradio_yolov8_det_v1.py -isz 320 | |
| # 设置最大检测数,默认为50 | |
| python gradio_yolov8_det_v1.py -mdn 100 | |
| # 设置滑块步长,默认为0.05 | |
| python gradio_yolov8_det_v1.py -ss 0.01 | |
| ``` | |
| """ | |
| ) | |
| det_btn_img.click( | |
| fn=yolo_det_img, | |
| inputs=[ | |
| inputs_img, | |
| inputs_model, | |
| device_opt, | |
| inputs_size, | |
| input_conf, | |
| inputs_iou, | |
| max_det, | |
| inputs_cls_name, | |
| obj_size, | |
| ], | |
| outputs=[ | |
| outputs_img_slider, | |
| outputs_imgfiles, | |
| outputs_objSize, | |
| outputs_clsSize, | |
| ], | |
| ) | |
| det_btn_img_cls.click( | |
| fn=yolo_cls_img, | |
| inputs=[inputs_img_cls, device_opt_cls, inputs_model_cls], | |
| outputs=[outputs_img_cls, outputs_ratio_cls], | |
| ) | |
| return gyd | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| gyd = main(args) | |
| is_share = args.is_share | |
| gyd.queue().launch( | |
| inbrowser=True, # 自动打开默认浏览器 | |
| share=is_share, # 项目共享,其他设备可以访问 | |
| favicon_path="./icon/logo.ico", # 网页图标 | |
| show_error=True, # 在浏览器控制台中显示错误信息 | |
| quiet=True, # 禁止大多数打印语句 | |
| ) | |