Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
import numpy as np | |
import torch | |
router = APIRouter() | |
DESCRIPTION = "FrugalDisinfoHunter Model" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
try: | |
# Model configuration | |
model_name = "Zen0/FrugalDisinfoHunter" # Model path | |
tokenizer_name = "google/mobilebert-uncased" # Base MobileBERT tokenizer | |
BATCH_SIZE = 32 # Batch size for efficient processing | |
MAX_LENGTH = 512 # Maximum sequence length | |
# Initialize model and tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained( | |
model_name, | |
num_labels=8, | |
output_hidden_states=True, | |
problem_type="single_label_classification" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
# Move model to appropriate device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
model.eval() # Set model to evaluation mode | |
# Get test texts | |
test_texts = test_dataset["quote"] | |
predictions = [] | |
# Process in batches | |
for i in range(0, len(test_texts), BATCH_SIZE): | |
batch_texts = test_texts[i:i + BATCH_SIZE] | |
# Tokenize batch | |
inputs = tokenizer( | |
batch_texts, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
max_length=MAX_LENGTH | |
) | |
# Move inputs to device | |
inputs = {key: val.to(device) for key, val in inputs.items()} | |
# Run inference | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
batch_preds = torch.argmax(outputs.logits, dim=1) | |
predictions.extend(batch_preds.cpu().numpy()) | |
# Get true labels | |
true_labels = test_dataset['label'] | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results | |
except Exception as e: | |
# Stop tracking in case of error | |
tracker.stop_task() | |
raise e |