Zen0's picture
Update tasks/text.py
a065296 verified
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import numpy as np
import torch
router = APIRouter()
DESCRIPTION = "FrugalDisinfoHunter Model"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
try:
# Model configuration
model_name = "Zen0/FrugalDisinfoHunter" # Model path
tokenizer_name = "google/mobilebert-uncased" # Base MobileBERT tokenizer
BATCH_SIZE = 32 # Batch size for efficient processing
MAX_LENGTH = 512 # Maximum sequence length
# Initialize model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=8,
output_hidden_states=True,
problem_type="single_label_classification"
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
# Move model to appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval() # Set model to evaluation mode
# Get test texts
test_texts = test_dataset["quote"]
predictions = []
# Process in batches
for i in range(0, len(test_texts), BATCH_SIZE):
batch_texts = test_texts[i:i + BATCH_SIZE]
# Tokenize batch
inputs = tokenizer(
batch_texts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=MAX_LENGTH
)
# Move inputs to device
inputs = {key: val.to(device) for key, val in inputs.items()}
# Run inference
with torch.no_grad():
outputs = model(**inputs)
batch_preds = torch.argmax(outputs.logits, dim=1)
predictions.extend(batch_preds.cpu().numpy())
# Get true labels
true_labels = test_dataset['label']
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
except Exception as e:
# Stop tracking in case of error
tracker.stop_task()
raise e