Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import pdfplumber | |
# Initialize the InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Function to extract text from PDFs | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
with pdfplumber.open(pdf_path) as pdf: | |
for page in pdf.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text | |
return text | |
# Load and preprocess book PDFs | |
pdf_files = ["Diagnostic and statistical manual of mental disorders _ DSM-5 ( PDFDrive.com ).pdf"] | |
all_texts = [extract_text_from_pdf(pdf) for pdf in pdf_files] | |
# Split text into chunks | |
def chunk_text(text, chunk_size=300): | |
sentences = text.split('. ') | |
chunks, current_chunk = [], "" | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence) <= chunk_size: | |
current_chunk += sentence + ". " | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence + ". " | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
# Prepare embeddings for each book | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension()) | |
chunked_texts = [chunk_text(text) for text in all_texts] | |
all_chunks = [chunk for chunks in chunked_texts for chunk in chunks] | |
embeddings = model.encode(all_chunks, convert_to_tensor=True).detach().cpu().numpy() | |
index.add(embeddings) | |
# Function to generate response | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
# Step 1: Retrieve relevant chunks based on user message | |
query_embedding = model.encode([message], convert_to_tensor=True).detach().cpu().numpy() | |
k = 5 | |
_, indices = index.search(query_embedding, k) | |
relevant_chunks = " ".join([all_chunks[idx] for idx in indices[0]]) | |
# Step 2: Create prompt for the model | |
prompt = f"{system_message}\n\nUser Query: {message}\n\nRelevant Information: {relevant_chunks}" | |
response = "" | |
# Step 3: Generate response | |
for message in client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": message}], | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio ChatInterface with additional inputs | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful and empathetic mental health assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |