hamaadayubkhan's picture
Create app.py
eab8006 verified
import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pdfplumber
# Initialize the InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Function to extract text from PDFs
def extract_text_from_pdf(pdf_path):
text = ""
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text
return text
# Load and preprocess book PDFs
pdf_files = ["Diagnostic and statistical manual of mental disorders _ DSM-5 ( PDFDrive.com ).pdf"]
all_texts = [extract_text_from_pdf(pdf) for pdf in pdf_files]
# Split text into chunks
def chunk_text(text, chunk_size=300):
sentences = text.split('. ')
chunks, current_chunk = [], ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= chunk_size:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Prepare embeddings for each book
model = SentenceTransformer("all-MiniLM-L6-v2")
index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension())
chunked_texts = [chunk_text(text) for text in all_texts]
all_chunks = [chunk for chunks in chunked_texts for chunk in chunks]
embeddings = model.encode(all_chunks, convert_to_tensor=True).detach().cpu().numpy()
index.add(embeddings)
# Function to generate response
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Step 1: Retrieve relevant chunks based on user message
query_embedding = model.encode([message], convert_to_tensor=True).detach().cpu().numpy()
k = 5
_, indices = index.search(query_embedding, k)
relevant_chunks = " ".join([all_chunks[idx] for idx in indices[0]])
# Step 2: Create prompt for the model
prompt = f"{system_message}\n\nUser Query: {message}\n\nRelevant Information: {relevant_chunks}"
response = ""
# Step 3: Generate response
for message in client.chat_completion(
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio ChatInterface with additional inputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful and empathetic mental health assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()