import gradio as gr import pandas as pd import random data = pd.read_pickle("merged_all_table.pkl", compression='bz2') home_team_id = sorted(data["home_team_long_name"].unique()) away_team_id = sorted(data["away_team_long_name"].unique()) def predict(*args): pass # markup table for markdown # # Members: # | Students Name | Student ID | # | :--- | :----: | # | Zeel Karshanbhai Sheladiya | 500209119 | # | Ravikumar Chandrakantbhai Patel | 500196861 | # | Dharma Teja Reddy Bandreddi | 500209454 | # | Sai Charan Reddy Meda | 500201602 | # | Aditya Babu | 500209122 | # | Sudip Bhattarai | 500198055 | # | NOMAN FAZAL MUKADAM | 500209115 | # | Leela Prasad Kavuri | 500209550 | # | Vamsi Dasari | 500200775 | with gr.Blocks() as demo: gr.Markdown(""" # Subject: Data Science Project Management and Requirement Gathering 02 (Group 4) [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ravi7522/Football-Prediction) """) with gr.Row(): gr.Label("⚽️ Football Prediction ⚽️", container=False) with gr.Row(): with gr.Column(): home_team_id = gr.Dropdown( label="Home Team", choices=home_team_id, max_choices=1, ) with gr.Column(): Away_team_id = gr.Dropdown( label="Away Team", choices=away_team_id, max_choices=1, ) with gr.Row(): predict_btn = gr.Button(value="Predict") predict_btn.click( predict, inputs=[ # needed parameters ], outputs=[], ) with gr.Row(): plot = gr.Plot() demo.launch()