ZebangCheng commited on
Commit
be07910
·
1 Parent(s): cb91aa8
minigpt4/configs/models/minigpt_v2.yaml CHANGED
@@ -11,7 +11,7 @@ model:
11
  # generation configs
12
  prompt: ""
13
 
14
- llama_model: /home/czb/project/MiniGPT-4-main/checkpoints/Llama-2-7b-chat-hf
15
  # llama_model: "/home/user/project/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf"
16
  lora_r: 64
17
  lora_alpha: 16
 
11
  # generation configs
12
  prompt: ""
13
 
14
+ llama_model: "ZebangCheng/Emotion-LLaMA"
15
  # llama_model: "/home/user/project/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf"
16
  lora_r: 64
17
  lora_alpha: 16
minigpt4/conversation/conversation.py CHANGED
@@ -12,6 +12,7 @@ import torch
12
  from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
13
  from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
14
  from transformers import Wav2Vec2FeatureExtractor
 
15
 
16
  import dataclasses
17
  from enum import auto, Enum
@@ -263,11 +264,13 @@ class Chat:
263
  # model_file = "checkpoints/transformer/chinese-hubert-large"
264
  model_file = "ZebangCheng/chinese-hubert-large"
265
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_file)
 
266
  input_values = feature_extractor(samples, sampling_rate=sr, return_tensors="pt").input_values
267
  # print("input_values:", input_values)
268
 
269
  from transformers import HubertModel
270
- hubert_model = HubertModel.from_pretrained(model_file)
 
271
  hubert_model.eval()
272
  with torch.no_grad():
273
  hidden_states = hubert_model(input_values, output_hidden_states=True).hidden_states # tuple of (B, T, D)
 
12
  from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
13
  from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
14
  from transformers import Wav2Vec2FeatureExtractor
15
+ from transformers import AutoProcessor, AutoModel
16
 
17
  import dataclasses
18
  from enum import auto, Enum
 
264
  # model_file = "checkpoints/transformer/chinese-hubert-large"
265
  model_file = "ZebangCheng/chinese-hubert-large"
266
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_file)
267
+
268
  input_values = feature_extractor(samples, sampling_rate=sr, return_tensors="pt").input_values
269
  # print("input_values:", input_values)
270
 
271
  from transformers import HubertModel
272
+ # hubert_model = HubertModel.from_pretrained(model_file)
273
+ hubert_model = AutoModel.from_pretrained("ZebangCheng/chinese-hubert-large")
274
  hubert_model.eval()
275
  with torch.no_grad():
276
  hidden_states = hubert_model(input_values, output_hidden_states=True).hidden_states # tuple of (B, T, D)
minigpt4/models/base_model.py CHANGED
@@ -13,7 +13,9 @@ from omegaconf import OmegaConf
13
  import numpy as np
14
  import torch
15
  import torch.nn as nn
16
- from transformers import LlamaTokenizer
 
 
17
  from peft import (
18
  LoraConfig,
19
  get_peft_model,
@@ -23,7 +25,8 @@ from peft import (
23
  from minigpt4.common.dist_utils import download_cached_file
24
  from minigpt4.common.utils import get_abs_path, is_url
25
  from minigpt4.models.eva_vit import create_eva_vit_g
26
- from minigpt4.models.modeling_llama import LlamaForCausalLM
 
27
 
28
 
29
 
@@ -172,7 +175,9 @@ class BaseModel(nn.Module):
172
  def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
173
  lora_target_modules=["q_proj","k_proj"], **lora_kargs):
174
  logging.info('Loading LLAMA')
175
- llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
 
 
176
  llama_tokenizer.pad_token = "$$"
177
 
178
  if low_resource:
 
13
  import numpy as np
14
  import torch
15
  import torch.nn as nn
16
+ # from transformers import LlamaTokenizer
17
+ from transformers import AutoTokenizer
18
+
19
  from peft import (
20
  LoraConfig,
21
  get_peft_model,
 
25
  from minigpt4.common.dist_utils import download_cached_file
26
  from minigpt4.common.utils import get_abs_path, is_url
27
  from minigpt4.models.eva_vit import create_eva_vit_g
28
+ # from minigpt4.models.modeling_llama import LlamaForCausalLM
29
+ from transformers.models.llama.modeling_llama import LlamaForCausalLM
30
 
31
 
32
 
 
175
  def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
176
  lora_target_modules=["q_proj","k_proj"], **lora_kargs):
177
  logging.info('Loading LLAMA')
178
+ llama_model_path
179
+ # llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
180
+ llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_path)
181
  llama_tokenizer.pad_token = "$$"
182
 
183
  if low_resource: