ZebangCheng commited on
Commit
6c8a46d
·
1 Parent(s): 691ef95
minigpt4/models/Qformer.py ADDED
@@ -0,0 +1,1216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ * Copyright (c) 2023, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on huggingface code base
8
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ """
10
+
11
+ import math
12
+ import os
13
+ import warnings
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple, Dict, Any
16
+
17
+ import torch
18
+ from torch import Tensor, device, dtype, nn
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss
22
+ import torch.nn.functional as F
23
+
24
+ from transformers.activations import ACT2FN
25
+ from transformers.file_utils import (
26
+ ModelOutput,
27
+ )
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ CausalLMOutputWithCrossAttentions,
32
+ MaskedLMOutput,
33
+ MultipleChoiceModelOutput,
34
+ NextSentencePredictorOutput,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutput,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import (
40
+ PreTrainedModel,
41
+ apply_chunking_to_forward,
42
+ find_pruneable_heads_and_indices,
43
+ prune_linear_layer,
44
+ )
45
+ from transformers.utils import logging
46
+ from transformers.models.bert.configuration_bert import BertConfig
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+
51
+ class BertEmbeddings(nn.Module):
52
+ """Construct the embeddings from word and position embeddings."""
53
+
54
+ def __init__(self, config):
55
+ super().__init__()
56
+ self.word_embeddings = nn.Embedding(
57
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
58
+ )
59
+ self.position_embeddings = nn.Embedding(
60
+ config.max_position_embeddings, config.hidden_size
61
+ )
62
+
63
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
64
+ # any TensorFlow checkpoint file
65
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
66
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
67
+
68
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
69
+ self.register_buffer(
70
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
71
+ )
72
+ self.position_embedding_type = getattr(
73
+ config, "position_embedding_type", "absolute"
74
+ )
75
+
76
+ self.config = config
77
+
78
+ def forward(
79
+ self,
80
+ input_ids=None,
81
+ position_ids=None,
82
+ query_embeds=None,
83
+ past_key_values_length=0,
84
+ ):
85
+ if input_ids is not None:
86
+ seq_length = input_ids.size()[1]
87
+ else:
88
+ seq_length = 0
89
+
90
+ if position_ids is None:
91
+ position_ids = self.position_ids[
92
+ :, past_key_values_length : seq_length + past_key_values_length
93
+ ].clone()
94
+
95
+ if input_ids is not None:
96
+ embeddings = self.word_embeddings(input_ids)
97
+ if self.position_embedding_type == "absolute":
98
+ position_embeddings = self.position_embeddings(position_ids)
99
+ embeddings = embeddings + position_embeddings
100
+
101
+ if query_embeds is not None:
102
+ embeddings = torch.cat((query_embeds, embeddings), dim=1)
103
+ else:
104
+ embeddings = query_embeds
105
+
106
+ embeddings = self.LayerNorm(embeddings)
107
+ embeddings = self.dropout(embeddings)
108
+ return embeddings
109
+
110
+
111
+ class BertSelfAttention(nn.Module):
112
+ def __init__(self, config, is_cross_attention):
113
+ super().__init__()
114
+ self.config = config
115
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
116
+ config, "embedding_size"
117
+ ):
118
+ raise ValueError(
119
+ "The hidden size (%d) is not a multiple of the number of attention "
120
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
121
+ )
122
+
123
+ self.num_attention_heads = config.num_attention_heads
124
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
125
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
126
+
127
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
128
+ if is_cross_attention:
129
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
130
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
131
+ else:
132
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
133
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
134
+
135
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
136
+ self.position_embedding_type = getattr(
137
+ config, "position_embedding_type", "absolute"
138
+ )
139
+ if (
140
+ self.position_embedding_type == "relative_key"
141
+ or self.position_embedding_type == "relative_key_query"
142
+ ):
143
+ self.max_position_embeddings = config.max_position_embeddings
144
+ self.distance_embedding = nn.Embedding(
145
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
146
+ )
147
+ self.save_attention = False
148
+
149
+ def save_attn_gradients(self, attn_gradients):
150
+ self.attn_gradients = attn_gradients
151
+
152
+ def get_attn_gradients(self):
153
+ return self.attn_gradients
154
+
155
+ def save_attention_map(self, attention_map):
156
+ self.attention_map = attention_map
157
+
158
+ def get_attention_map(self):
159
+ return self.attention_map
160
+
161
+ def transpose_for_scores(self, x):
162
+ new_x_shape = x.size()[:-1] + (
163
+ self.num_attention_heads,
164
+ self.attention_head_size,
165
+ )
166
+ x = x.view(*new_x_shape)
167
+ return x.permute(0, 2, 1, 3)
168
+
169
+ def forward(
170
+ self,
171
+ hidden_states,
172
+ attention_mask=None,
173
+ head_mask=None,
174
+ encoder_hidden_states=None,
175
+ encoder_attention_mask=None,
176
+ past_key_value=None,
177
+ output_attentions=False,
178
+ ):
179
+
180
+ # If this is instantiated as a cross-attention module, the keys
181
+ # and values come from an encoder; the attention mask needs to be
182
+ # such that the encoder's padding tokens are not attended to.
183
+ is_cross_attention = encoder_hidden_states is not None
184
+
185
+ if is_cross_attention:
186
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
187
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
188
+ attention_mask = encoder_attention_mask
189
+ elif past_key_value is not None:
190
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
191
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
192
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
193
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
194
+ else:
195
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
196
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
197
+
198
+ mixed_query_layer = self.query(hidden_states)
199
+
200
+ query_layer = self.transpose_for_scores(mixed_query_layer)
201
+
202
+ past_key_value = (key_layer, value_layer)
203
+
204
+ # Take the dot product between "query" and "key" to get the raw attention scores.
205
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
206
+
207
+ if (
208
+ self.position_embedding_type == "relative_key"
209
+ or self.position_embedding_type == "relative_key_query"
210
+ ):
211
+ seq_length = hidden_states.size()[1]
212
+ position_ids_l = torch.arange(
213
+ seq_length, dtype=torch.long, device=hidden_states.device
214
+ ).view(-1, 1)
215
+ position_ids_r = torch.arange(
216
+ seq_length, dtype=torch.long, device=hidden_states.device
217
+ ).view(1, -1)
218
+ distance = position_ids_l - position_ids_r
219
+ positional_embedding = self.distance_embedding(
220
+ distance + self.max_position_embeddings - 1
221
+ )
222
+ positional_embedding = positional_embedding.to(
223
+ dtype=query_layer.dtype
224
+ ) # fp16 compatibility
225
+
226
+ if self.position_embedding_type == "relative_key":
227
+ relative_position_scores = torch.einsum(
228
+ "bhld,lrd->bhlr", query_layer, positional_embedding
229
+ )
230
+ attention_scores = attention_scores + relative_position_scores
231
+ elif self.position_embedding_type == "relative_key_query":
232
+ relative_position_scores_query = torch.einsum(
233
+ "bhld,lrd->bhlr", query_layer, positional_embedding
234
+ )
235
+ relative_position_scores_key = torch.einsum(
236
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
237
+ )
238
+ attention_scores = (
239
+ attention_scores
240
+ + relative_position_scores_query
241
+ + relative_position_scores_key
242
+ )
243
+
244
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
245
+ if attention_mask is not None:
246
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
247
+ attention_scores = attention_scores + attention_mask
248
+
249
+ # Normalize the attention scores to probabilities.
250
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
251
+
252
+ if is_cross_attention and self.save_attention:
253
+ self.save_attention_map(attention_probs)
254
+ attention_probs.register_hook(self.save_attn_gradients)
255
+
256
+ # This is actually dropping out entire tokens to attend to, which might
257
+ # seem a bit unusual, but is taken from the original Transformer paper.
258
+ attention_probs_dropped = self.dropout(attention_probs)
259
+
260
+ # Mask heads if we want to
261
+ if head_mask is not None:
262
+ attention_probs_dropped = attention_probs_dropped * head_mask
263
+
264
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
265
+
266
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
267
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
268
+ context_layer = context_layer.view(*new_context_layer_shape)
269
+
270
+ outputs = (
271
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
272
+ )
273
+
274
+ outputs = outputs + (past_key_value,)
275
+ return outputs
276
+
277
+
278
+ class BertSelfOutput(nn.Module):
279
+ def __init__(self, config):
280
+ super().__init__()
281
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
282
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
283
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
284
+
285
+ def forward(self, hidden_states, input_tensor):
286
+ hidden_states = self.dense(hidden_states)
287
+ hidden_states = self.dropout(hidden_states)
288
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
289
+ return hidden_states
290
+
291
+
292
+ class BertAttention(nn.Module):
293
+ def __init__(self, config, is_cross_attention=False):
294
+ super().__init__()
295
+ self.self = BertSelfAttention(config, is_cross_attention)
296
+ self.output = BertSelfOutput(config)
297
+ self.pruned_heads = set()
298
+
299
+ def prune_heads(self, heads):
300
+ if len(heads) == 0:
301
+ return
302
+ heads, index = find_pruneable_heads_and_indices(
303
+ heads,
304
+ self.self.num_attention_heads,
305
+ self.self.attention_head_size,
306
+ self.pruned_heads,
307
+ )
308
+
309
+ # Prune linear layers
310
+ self.self.query = prune_linear_layer(self.self.query, index)
311
+ self.self.key = prune_linear_layer(self.self.key, index)
312
+ self.self.value = prune_linear_layer(self.self.value, index)
313
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
314
+
315
+ # Update hyper params and store pruned heads
316
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
317
+ self.self.all_head_size = (
318
+ self.self.attention_head_size * self.self.num_attention_heads
319
+ )
320
+ self.pruned_heads = self.pruned_heads.union(heads)
321
+
322
+ def forward(
323
+ self,
324
+ hidden_states,
325
+ attention_mask=None,
326
+ head_mask=None,
327
+ encoder_hidden_states=None,
328
+ encoder_attention_mask=None,
329
+ past_key_value=None,
330
+ output_attentions=False,
331
+ ):
332
+ self_outputs = self.self(
333
+ hidden_states,
334
+ attention_mask,
335
+ head_mask,
336
+ encoder_hidden_states,
337
+ encoder_attention_mask,
338
+ past_key_value,
339
+ output_attentions,
340
+ )
341
+ attention_output = self.output(self_outputs[0], hidden_states)
342
+
343
+ outputs = (attention_output,) + self_outputs[
344
+ 1:
345
+ ] # add attentions if we output them
346
+ return outputs
347
+
348
+
349
+ class BertIntermediate(nn.Module):
350
+ def __init__(self, config):
351
+ super().__init__()
352
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
353
+ if isinstance(config.hidden_act, str):
354
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
355
+ else:
356
+ self.intermediate_act_fn = config.hidden_act
357
+
358
+ def forward(self, hidden_states):
359
+ hidden_states = self.dense(hidden_states)
360
+ hidden_states = self.intermediate_act_fn(hidden_states)
361
+ return hidden_states
362
+
363
+
364
+ class BertOutput(nn.Module):
365
+ def __init__(self, config):
366
+ super().__init__()
367
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
368
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
369
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
370
+
371
+ def forward(self, hidden_states, input_tensor):
372
+ hidden_states = self.dense(hidden_states)
373
+ hidden_states = self.dropout(hidden_states)
374
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
375
+ return hidden_states
376
+
377
+
378
+ class BertLayer(nn.Module):
379
+ def __init__(self, config, layer_num):
380
+ super().__init__()
381
+ self.config = config
382
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
383
+ self.seq_len_dim = 1
384
+ self.attention = BertAttention(config)
385
+ self.layer_num = layer_num
386
+ if (
387
+ self.config.add_cross_attention
388
+ and layer_num % self.config.cross_attention_freq == 0
389
+ ):
390
+ self.crossattention = BertAttention(
391
+ config, is_cross_attention=self.config.add_cross_attention
392
+ )
393
+ self.has_cross_attention = True
394
+ else:
395
+ self.has_cross_attention = False
396
+ self.intermediate = BertIntermediate(config)
397
+ self.output = BertOutput(config)
398
+
399
+ self.intermediate_query = BertIntermediate(config)
400
+ self.output_query = BertOutput(config)
401
+
402
+ def forward(
403
+ self,
404
+ hidden_states,
405
+ attention_mask=None,
406
+ head_mask=None,
407
+ encoder_hidden_states=None,
408
+ encoder_attention_mask=None,
409
+ past_key_value=None,
410
+ output_attentions=False,
411
+ query_length=0,
412
+ ):
413
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
414
+ self_attn_past_key_value = (
415
+ past_key_value[:2] if past_key_value is not None else None
416
+ )
417
+ self_attention_outputs = self.attention(
418
+ hidden_states,
419
+ attention_mask,
420
+ head_mask,
421
+ output_attentions=output_attentions,
422
+ past_key_value=self_attn_past_key_value,
423
+ )
424
+ attention_output = self_attention_outputs[0]
425
+ outputs = self_attention_outputs[1:-1]
426
+
427
+ present_key_value = self_attention_outputs[-1]
428
+
429
+ if query_length > 0:
430
+ query_attention_output = attention_output[:, :query_length, :]
431
+
432
+ if self.has_cross_attention:
433
+ assert (
434
+ encoder_hidden_states is not None
435
+ ), "encoder_hidden_states must be given for cross-attention layers"
436
+ cross_attention_outputs = self.crossattention(
437
+ query_attention_output,
438
+ attention_mask,
439
+ head_mask,
440
+ encoder_hidden_states,
441
+ encoder_attention_mask,
442
+ output_attentions=output_attentions,
443
+ )
444
+ query_attention_output = cross_attention_outputs[0]
445
+ outputs = (
446
+ outputs + cross_attention_outputs[1:-1]
447
+ ) # add cross attentions if we output attention weights
448
+
449
+ layer_output = apply_chunking_to_forward(
450
+ self.feed_forward_chunk_query,
451
+ self.chunk_size_feed_forward,
452
+ self.seq_len_dim,
453
+ query_attention_output,
454
+ )
455
+ if attention_output.shape[1] > query_length:
456
+ layer_output_text = apply_chunking_to_forward(
457
+ self.feed_forward_chunk,
458
+ self.chunk_size_feed_forward,
459
+ self.seq_len_dim,
460
+ attention_output[:, query_length:, :],
461
+ )
462
+ layer_output = torch.cat([layer_output, layer_output_text], dim=1)
463
+ else:
464
+ layer_output = apply_chunking_to_forward(
465
+ self.feed_forward_chunk,
466
+ self.chunk_size_feed_forward,
467
+ self.seq_len_dim,
468
+ attention_output,
469
+ )
470
+ outputs = (layer_output,) + outputs
471
+
472
+ outputs = outputs + (present_key_value,)
473
+
474
+ return outputs
475
+
476
+ def feed_forward_chunk(self, attention_output):
477
+ intermediate_output = self.intermediate(attention_output)
478
+ layer_output = self.output(intermediate_output, attention_output)
479
+ return layer_output
480
+
481
+ def feed_forward_chunk_query(self, attention_output):
482
+ intermediate_output = self.intermediate_query(attention_output)
483
+ layer_output = self.output_query(intermediate_output, attention_output)
484
+ return layer_output
485
+
486
+
487
+ class BertEncoder(nn.Module):
488
+ def __init__(self, config):
489
+ super().__init__()
490
+ self.config = config
491
+ self.layer = nn.ModuleList(
492
+ [BertLayer(config, i) for i in range(config.num_hidden_layers)]
493
+ )
494
+
495
+ def forward(
496
+ self,
497
+ hidden_states,
498
+ attention_mask=None,
499
+ head_mask=None,
500
+ encoder_hidden_states=None,
501
+ encoder_attention_mask=None,
502
+ past_key_values=None,
503
+ use_cache=None,
504
+ output_attentions=False,
505
+ output_hidden_states=False,
506
+ return_dict=True,
507
+ query_length=0,
508
+ ):
509
+ all_hidden_states = () if output_hidden_states else None
510
+ all_self_attentions = () if output_attentions else None
511
+ all_cross_attentions = (
512
+ () if output_attentions and self.config.add_cross_attention else None
513
+ )
514
+
515
+ next_decoder_cache = () if use_cache else None
516
+
517
+ for i in range(self.config.num_hidden_layers):
518
+ layer_module = self.layer[i]
519
+ if output_hidden_states:
520
+ all_hidden_states = all_hidden_states + (hidden_states,)
521
+
522
+ layer_head_mask = head_mask[i] if head_mask is not None else None
523
+ past_key_value = past_key_values[i] if past_key_values is not None else None
524
+
525
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
526
+
527
+ if use_cache:
528
+ logger.warn(
529
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
530
+ )
531
+ use_cache = False
532
+
533
+ def create_custom_forward(module):
534
+ def custom_forward(*inputs):
535
+ return module(
536
+ *inputs, past_key_value, output_attentions, query_length
537
+ )
538
+
539
+ return custom_forward
540
+
541
+ layer_outputs = torch.utils.checkpoint.checkpoint(
542
+ create_custom_forward(layer_module),
543
+ hidden_states,
544
+ attention_mask,
545
+ layer_head_mask,
546
+ encoder_hidden_states,
547
+ encoder_attention_mask,
548
+ )
549
+ else:
550
+ layer_outputs = layer_module(
551
+ hidden_states,
552
+ attention_mask,
553
+ layer_head_mask,
554
+ encoder_hidden_states,
555
+ encoder_attention_mask,
556
+ past_key_value,
557
+ output_attentions,
558
+ query_length,
559
+ )
560
+
561
+ hidden_states = layer_outputs[0]
562
+ if use_cache:
563
+ next_decoder_cache += (layer_outputs[-1],)
564
+ if output_attentions:
565
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
566
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
567
+
568
+ if output_hidden_states:
569
+ all_hidden_states = all_hidden_states + (hidden_states,)
570
+
571
+ if not return_dict:
572
+ return tuple(
573
+ v
574
+ for v in [
575
+ hidden_states,
576
+ next_decoder_cache,
577
+ all_hidden_states,
578
+ all_self_attentions,
579
+ all_cross_attentions,
580
+ ]
581
+ if v is not None
582
+ )
583
+ return BaseModelOutputWithPastAndCrossAttentions(
584
+ last_hidden_state=hidden_states,
585
+ past_key_values=next_decoder_cache,
586
+ hidden_states=all_hidden_states,
587
+ attentions=all_self_attentions,
588
+ cross_attentions=all_cross_attentions,
589
+ )
590
+
591
+
592
+ class BertPooler(nn.Module):
593
+ def __init__(self, config):
594
+ super().__init__()
595
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
596
+ self.activation = nn.Tanh()
597
+
598
+ def forward(self, hidden_states):
599
+ # We "pool" the model by simply taking the hidden state corresponding
600
+ # to the first token.
601
+ first_token_tensor = hidden_states[:, 0]
602
+ pooled_output = self.dense(first_token_tensor)
603
+ pooled_output = self.activation(pooled_output)
604
+ return pooled_output
605
+
606
+
607
+ class BertPredictionHeadTransform(nn.Module):
608
+ def __init__(self, config):
609
+ super().__init__()
610
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
611
+ if isinstance(config.hidden_act, str):
612
+ self.transform_act_fn = ACT2FN[config.hidden_act]
613
+ else:
614
+ self.transform_act_fn = config.hidden_act
615
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
616
+
617
+ def forward(self, hidden_states):
618
+ hidden_states = self.dense(hidden_states)
619
+ hidden_states = self.transform_act_fn(hidden_states)
620
+ hidden_states = self.LayerNorm(hidden_states)
621
+ return hidden_states
622
+
623
+
624
+ class BertLMPredictionHead(nn.Module):
625
+ def __init__(self, config):
626
+ super().__init__()
627
+ self.transform = BertPredictionHeadTransform(config)
628
+
629
+ # The output weights are the same as the input embeddings, but there is
630
+ # an output-only bias for each token.
631
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
632
+
633
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
634
+
635
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
636
+ self.decoder.bias = self.bias
637
+
638
+ def forward(self, hidden_states):
639
+ hidden_states = self.transform(hidden_states)
640
+ hidden_states = self.decoder(hidden_states)
641
+ return hidden_states
642
+
643
+
644
+ class BertOnlyMLMHead(nn.Module):
645
+ def __init__(self, config):
646
+ super().__init__()
647
+ self.predictions = BertLMPredictionHead(config)
648
+
649
+ def forward(self, sequence_output):
650
+ prediction_scores = self.predictions(sequence_output)
651
+ return prediction_scores
652
+
653
+
654
+ class BertPreTrainedModel(PreTrainedModel):
655
+ """
656
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
657
+ models.
658
+ """
659
+
660
+ config_class = BertConfig
661
+ base_model_prefix = "bert"
662
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
663
+
664
+ def _init_weights(self, module):
665
+ """Initialize the weights"""
666
+ if isinstance(module, (nn.Linear, nn.Embedding)):
667
+ # Slightly different from the TF version which uses truncated_normal for initialization
668
+ # cf https://github.com/pytorch/pytorch/pull/5617
669
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
670
+ elif isinstance(module, nn.LayerNorm):
671
+ module.bias.data.zero_()
672
+ module.weight.data.fill_(1.0)
673
+ if isinstance(module, nn.Linear) and module.bias is not None:
674
+ module.bias.data.zero_()
675
+
676
+
677
+ class BertModel(BertPreTrainedModel):
678
+ """
679
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
680
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
681
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
682
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
683
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
684
+ input to the forward pass.
685
+ """
686
+
687
+ def __init__(self, config, add_pooling_layer=False):
688
+ super().__init__(config)
689
+ self.config = config
690
+
691
+ self.embeddings = BertEmbeddings(config)
692
+
693
+ self.encoder = BertEncoder(config)
694
+
695
+ self.pooler = BertPooler(config) if add_pooling_layer else None
696
+
697
+ self.init_weights()
698
+
699
+ def get_input_embeddings(self):
700
+ return self.embeddings.word_embeddings
701
+
702
+ def set_input_embeddings(self, value):
703
+ self.embeddings.word_embeddings = value
704
+
705
+ def _prune_heads(self, heads_to_prune):
706
+ """
707
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
708
+ class PreTrainedModel
709
+ """
710
+ for layer, heads in heads_to_prune.items():
711
+ self.encoder.layer[layer].attention.prune_heads(heads)
712
+
713
+ def get_extended_attention_mask(
714
+ self,
715
+ attention_mask: Tensor,
716
+ input_shape: Tuple[int],
717
+ device: device,
718
+ is_decoder: bool,
719
+ has_query: bool = False,
720
+ ) -> Tensor:
721
+ """
722
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
723
+
724
+ Arguments:
725
+ attention_mask (:obj:`torch.Tensor`):
726
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
727
+ input_shape (:obj:`Tuple[int]`):
728
+ The shape of the input to the model.
729
+ device: (:obj:`torch.device`):
730
+ The device of the input to the model.
731
+
732
+ Returns:
733
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
734
+ """
735
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
736
+ # ourselves in which case we just need to make it broadcastable to all heads.
737
+ if attention_mask.dim() == 3:
738
+ extended_attention_mask = attention_mask[:, None, :, :]
739
+ elif attention_mask.dim() == 2:
740
+ # Provided a padding mask of dimensions [batch_size, seq_length]
741
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
742
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
743
+ if is_decoder:
744
+ batch_size, seq_length = input_shape
745
+
746
+ seq_ids = torch.arange(seq_length, device=device)
747
+ causal_mask = (
748
+ seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
749
+ <= seq_ids[None, :, None]
750
+ )
751
+
752
+ # add a prefix ones mask to the causal mask
753
+ # causal and attention masks must have same type with pytorch version < 1.3
754
+ causal_mask = causal_mask.to(attention_mask.dtype)
755
+
756
+ if causal_mask.shape[1] < attention_mask.shape[1]:
757
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
758
+ if has_query: # UniLM style attention mask
759
+ causal_mask = torch.cat(
760
+ [
761
+ torch.zeros(
762
+ (batch_size, prefix_seq_len, seq_length),
763
+ device=device,
764
+ dtype=causal_mask.dtype,
765
+ ),
766
+ causal_mask,
767
+ ],
768
+ axis=1,
769
+ )
770
+ causal_mask = torch.cat(
771
+ [
772
+ torch.ones(
773
+ (batch_size, causal_mask.shape[1], prefix_seq_len),
774
+ device=device,
775
+ dtype=causal_mask.dtype,
776
+ ),
777
+ causal_mask,
778
+ ],
779
+ axis=-1,
780
+ )
781
+ extended_attention_mask = (
782
+ causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
783
+ )
784
+ else:
785
+ extended_attention_mask = attention_mask[:, None, None, :]
786
+ else:
787
+ raise ValueError(
788
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
789
+ input_shape, attention_mask.shape
790
+ )
791
+ )
792
+
793
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
794
+ # masked positions, this operation will create a tensor which is 0.0 for
795
+ # positions we want to attend and -10000.0 for masked positions.
796
+ # Since we are adding it to the raw scores before the softmax, this is
797
+ # effectively the same as removing these entirely.
798
+ extended_attention_mask = extended_attention_mask.to(
799
+ dtype=self.dtype
800
+ ) # fp16 compatibility
801
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
802
+ return extended_attention_mask
803
+
804
+ def forward(
805
+ self,
806
+ input_ids=None,
807
+ attention_mask=None,
808
+ position_ids=None,
809
+ head_mask=None,
810
+ query_embeds=None,
811
+ encoder_hidden_states=None,
812
+ encoder_attention_mask=None,
813
+ past_key_values=None,
814
+ use_cache=None,
815
+ output_attentions=None,
816
+ output_hidden_states=None,
817
+ return_dict=None,
818
+ is_decoder=False,
819
+ ):
820
+ r"""
821
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
822
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
823
+ the model is configured as a decoder.
824
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
825
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
826
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
827
+ - 1 for tokens that are **not masked**,
828
+ - 0 for tokens that are **masked**.
829
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
830
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
831
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
832
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
833
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
834
+ use_cache (:obj:`bool`, `optional`):
835
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
836
+ decoding (see :obj:`past_key_values`).
837
+ """
838
+ output_attentions = (
839
+ output_attentions
840
+ if output_attentions is not None
841
+ else self.config.output_attentions
842
+ )
843
+ output_hidden_states = (
844
+ output_hidden_states
845
+ if output_hidden_states is not None
846
+ else self.config.output_hidden_states
847
+ )
848
+ return_dict = (
849
+ return_dict if return_dict is not None else self.config.use_return_dict
850
+ )
851
+
852
+ # use_cache = use_cache if use_cache is not None else self.config.use_cache
853
+
854
+ if input_ids is None:
855
+ assert (
856
+ query_embeds is not None
857
+ ), "You have to specify query_embeds when input_ids is None"
858
+
859
+ # past_key_values_length
860
+ past_key_values_length = (
861
+ past_key_values[0][0].shape[2] - self.config.query_length
862
+ if past_key_values is not None
863
+ else 0
864
+ )
865
+
866
+ query_length = query_embeds.shape[1] if query_embeds is not None else 0
867
+
868
+ embedding_output = self.embeddings(
869
+ input_ids=input_ids,
870
+ position_ids=position_ids,
871
+ query_embeds=query_embeds,
872
+ past_key_values_length=past_key_values_length,
873
+ )
874
+
875
+ input_shape = embedding_output.size()[:-1]
876
+ batch_size, seq_length = input_shape
877
+ device = embedding_output.device
878
+
879
+ if attention_mask is None:
880
+ attention_mask = torch.ones(
881
+ ((batch_size, seq_length + past_key_values_length)), device=device
882
+ )
883
+
884
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
885
+ # ourselves in which case we just need to make it broadcastable to all heads.
886
+ if is_decoder:
887
+ extended_attention_mask = self.get_extended_attention_mask(
888
+ attention_mask,
889
+ input_ids.shape,
890
+ device,
891
+ is_decoder,
892
+ has_query=(query_embeds is not None),
893
+ )
894
+ else:
895
+ extended_attention_mask = self.get_extended_attention_mask(
896
+ attention_mask, input_shape, device, is_decoder
897
+ )
898
+
899
+ # If a 2D or 3D attention mask is provided for the cross-attention
900
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
901
+ if encoder_hidden_states is not None:
902
+ if type(encoder_hidden_states) == list:
903
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
904
+ 0
905
+ ].size()
906
+ else:
907
+ (
908
+ encoder_batch_size,
909
+ encoder_sequence_length,
910
+ _,
911
+ ) = encoder_hidden_states.size()
912
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
913
+
914
+ if type(encoder_attention_mask) == list:
915
+ encoder_extended_attention_mask = [
916
+ self.invert_attention_mask(mask) for mask in encoder_attention_mask
917
+ ]
918
+ elif encoder_attention_mask is None:
919
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
920
+ encoder_extended_attention_mask = self.invert_attention_mask(
921
+ encoder_attention_mask
922
+ )
923
+ else:
924
+ encoder_extended_attention_mask = self.invert_attention_mask(
925
+ encoder_attention_mask
926
+ )
927
+ else:
928
+ encoder_extended_attention_mask = None
929
+
930
+ # Prepare head mask if needed
931
+ # 1.0 in head_mask indicate we keep the head
932
+ # attention_probs has shape bsz x n_heads x N x N
933
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
934
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
935
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
936
+
937
+ encoder_outputs = self.encoder(
938
+ embedding_output,
939
+ attention_mask=extended_attention_mask,
940
+ head_mask=head_mask,
941
+ encoder_hidden_states=encoder_hidden_states,
942
+ encoder_attention_mask=encoder_extended_attention_mask,
943
+ past_key_values=past_key_values,
944
+ use_cache=use_cache,
945
+ output_attentions=output_attentions,
946
+ output_hidden_states=output_hidden_states,
947
+ return_dict=return_dict,
948
+ query_length=query_length,
949
+ )
950
+ sequence_output = encoder_outputs[0]
951
+ pooled_output = (
952
+ self.pooler(sequence_output) if self.pooler is not None else None
953
+ )
954
+
955
+ if not return_dict:
956
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
957
+
958
+ return BaseModelOutputWithPoolingAndCrossAttentions(
959
+ last_hidden_state=sequence_output,
960
+ pooler_output=pooled_output,
961
+ past_key_values=encoder_outputs.past_key_values,
962
+ hidden_states=encoder_outputs.hidden_states,
963
+ attentions=encoder_outputs.attentions,
964
+ cross_attentions=encoder_outputs.cross_attentions,
965
+ )
966
+
967
+
968
+ class BertLMHeadModel(BertPreTrainedModel):
969
+
970
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
971
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
972
+
973
+ def __init__(self, config):
974
+ super().__init__(config)
975
+
976
+ self.bert = BertModel(config, add_pooling_layer=False)
977
+ self.cls = BertOnlyMLMHead(config)
978
+
979
+ self.init_weights()
980
+
981
+ def get_output_embeddings(self):
982
+ return self.cls.predictions.decoder
983
+
984
+ def set_output_embeddings(self, new_embeddings):
985
+ self.cls.predictions.decoder = new_embeddings
986
+
987
+ def forward(
988
+ self,
989
+ input_ids=None,
990
+ attention_mask=None,
991
+ position_ids=None,
992
+ head_mask=None,
993
+ query_embeds=None,
994
+ encoder_hidden_states=None,
995
+ encoder_attention_mask=None,
996
+ labels=None,
997
+ past_key_values=None,
998
+ use_cache=True,
999
+ output_attentions=None,
1000
+ output_hidden_states=None,
1001
+ return_dict=None,
1002
+ return_logits=False,
1003
+ is_decoder=True,
1004
+ reduction="mean",
1005
+ ):
1006
+ r"""
1007
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1008
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1009
+ the model is configured as a decoder.
1010
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1011
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1012
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
1013
+ - 1 for tokens that are **not masked**,
1014
+ - 0 for tokens that are **masked**.
1015
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1016
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1017
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
1018
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
1019
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1020
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1021
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1022
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1023
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1024
+ use_cache (:obj:`bool`, `optional`):
1025
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1026
+ decoding (see :obj:`past_key_values`).
1027
+ Returns:
1028
+ Example::
1029
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
1030
+ >>> import torch
1031
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
1032
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
1033
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
1034
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1035
+ >>> outputs = model(**inputs)
1036
+ >>> prediction_logits = outputs.logits
1037
+ """
1038
+ return_dict = (
1039
+ return_dict if return_dict is not None else self.config.use_return_dict
1040
+ )
1041
+ if labels is not None:
1042
+ use_cache = False
1043
+ if past_key_values is not None:
1044
+ query_embeds = None
1045
+
1046
+ outputs = self.bert(
1047
+ input_ids,
1048
+ attention_mask=attention_mask,
1049
+ position_ids=position_ids,
1050
+ head_mask=head_mask,
1051
+ query_embeds=query_embeds,
1052
+ encoder_hidden_states=encoder_hidden_states,
1053
+ encoder_attention_mask=encoder_attention_mask,
1054
+ past_key_values=past_key_values,
1055
+ use_cache=use_cache,
1056
+ output_attentions=output_attentions,
1057
+ output_hidden_states=output_hidden_states,
1058
+ return_dict=return_dict,
1059
+ is_decoder=is_decoder,
1060
+ )
1061
+
1062
+ sequence_output = outputs[0]
1063
+ if query_embeds is not None:
1064
+ sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
1065
+
1066
+ prediction_scores = self.cls(sequence_output)
1067
+
1068
+ if return_logits:
1069
+ return prediction_scores[:, :-1, :].contiguous()
1070
+
1071
+ lm_loss = None
1072
+ if labels is not None:
1073
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1074
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1075
+ labels = labels[:, 1:].contiguous()
1076
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
1077
+ lm_loss = loss_fct(
1078
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
1079
+ labels.view(-1),
1080
+ )
1081
+ if reduction == "none":
1082
+ lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
1083
+
1084
+ if not return_dict:
1085
+ output = (prediction_scores,) + outputs[2:]
1086
+ return ((lm_loss,) + output) if lm_loss is not None else output
1087
+
1088
+ return CausalLMOutputWithCrossAttentions(
1089
+ loss=lm_loss,
1090
+ logits=prediction_scores,
1091
+ past_key_values=outputs.past_key_values,
1092
+ hidden_states=outputs.hidden_states,
1093
+ attentions=outputs.attentions,
1094
+ cross_attentions=outputs.cross_attentions,
1095
+ )
1096
+
1097
+ def prepare_inputs_for_generation(
1098
+ self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
1099
+ ):
1100
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1101
+ if attention_mask is None:
1102
+ attention_mask = input_ids.new_ones(input_ids.shape)
1103
+ query_mask = input_ids.new_ones(query_embeds.shape[:-1])
1104
+ attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
1105
+
1106
+ # cut decoder_input_ids if past is used
1107
+ if past is not None:
1108
+ input_ids = input_ids[:, -1:]
1109
+
1110
+ return {
1111
+ "input_ids": input_ids,
1112
+ "query_embeds": query_embeds,
1113
+ "attention_mask": attention_mask,
1114
+ "past_key_values": past,
1115
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
1116
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
1117
+ "is_decoder": True,
1118
+ }
1119
+
1120
+ def _reorder_cache(self, past, beam_idx):
1121
+ reordered_past = ()
1122
+ for layer_past in past:
1123
+ reordered_past += (
1124
+ tuple(
1125
+ past_state.index_select(0, beam_idx) for past_state in layer_past
1126
+ ),
1127
+ )
1128
+ return reordered_past
1129
+
1130
+
1131
+ class BertForMaskedLM(BertPreTrainedModel):
1132
+
1133
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
1134
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
1135
+
1136
+ def __init__(self, config):
1137
+ super().__init__(config)
1138
+
1139
+ self.bert = BertModel(config, add_pooling_layer=False)
1140
+ self.cls = BertOnlyMLMHead(config)
1141
+
1142
+ self.init_weights()
1143
+
1144
+ def get_output_embeddings(self):
1145
+ return self.cls.predictions.decoder
1146
+
1147
+ def set_output_embeddings(self, new_embeddings):
1148
+ self.cls.predictions.decoder = new_embeddings
1149
+
1150
+ def forward(
1151
+ self,
1152
+ input_ids=None,
1153
+ attention_mask=None,
1154
+ position_ids=None,
1155
+ head_mask=None,
1156
+ query_embeds=None,
1157
+ encoder_hidden_states=None,
1158
+ encoder_attention_mask=None,
1159
+ labels=None,
1160
+ output_attentions=None,
1161
+ output_hidden_states=None,
1162
+ return_dict=None,
1163
+ return_logits=False,
1164
+ is_decoder=False,
1165
+ ):
1166
+ r"""
1167
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1168
+ Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
1169
+ config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
1170
+ (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
1171
+ """
1172
+
1173
+ return_dict = (
1174
+ return_dict if return_dict is not None else self.config.use_return_dict
1175
+ )
1176
+
1177
+ outputs = self.bert(
1178
+ input_ids,
1179
+ attention_mask=attention_mask,
1180
+ position_ids=position_ids,
1181
+ head_mask=head_mask,
1182
+ query_embeds=query_embeds,
1183
+ encoder_hidden_states=encoder_hidden_states,
1184
+ encoder_attention_mask=encoder_attention_mask,
1185
+ output_attentions=output_attentions,
1186
+ output_hidden_states=output_hidden_states,
1187
+ return_dict=return_dict,
1188
+ is_decoder=is_decoder,
1189
+ )
1190
+
1191
+ if query_embeds is not None:
1192
+ sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
1193
+ prediction_scores = self.cls(sequence_output)
1194
+
1195
+ if return_logits:
1196
+ return prediction_scores
1197
+
1198
+ masked_lm_loss = None
1199
+ if labels is not None:
1200
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1201
+ masked_lm_loss = loss_fct(
1202
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1203
+ )
1204
+
1205
+ if not return_dict:
1206
+ output = (prediction_scores,) + outputs[2:]
1207
+ return (
1208
+ ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1209
+ )
1210
+
1211
+ return MaskedLMOutput(
1212
+ loss=masked_lm_loss,
1213
+ logits=prediction_scores,
1214
+ hidden_states=outputs.hidden_states,
1215
+ attentions=outputs.attentions,
1216
+ )
minigpt4/models/__init__.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import logging
9
+ import torch
10
+ from omegaconf import OmegaConf
11
+
12
+ from minigpt4.common.registry import registry
13
+ from minigpt4.models.base_model import BaseModel
14
+ from minigpt4.models.minigpt_base import MiniGPTBase
15
+ from minigpt4.models.minigpt4 import MiniGPT4
16
+ from minigpt4.models.minigpt_v2 import MiniGPTv2
17
+ from minigpt4.processors.base_processor import BaseProcessor
18
+
19
+
20
+ __all__ = [
21
+ "load_model",
22
+ "BaseModel",
23
+ "MiniGPTBase",
24
+ "MiniGPT4",
25
+ "MiniGPTv2"
26
+ ]
27
+
28
+
29
+ def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None):
30
+ """
31
+ Load supported models.
32
+
33
+ To list all available models and types in registry:
34
+ >>> from minigpt4.models import model_zoo
35
+ >>> print(model_zoo)
36
+
37
+ Args:
38
+ name (str): name of the model.
39
+ model_type (str): type of the model.
40
+ is_eval (bool): whether the model is in eval mode. Default: False.
41
+ device (str): device to use. Default: "cpu".
42
+ checkpoint (str): path or to checkpoint. Default: None.
43
+ Note that expecting the checkpoint to have the same keys in state_dict as the model.
44
+
45
+ Returns:
46
+ model (torch.nn.Module): model.
47
+ """
48
+
49
+ model = registry.get_model_class(name).from_pretrained(model_type=model_type)
50
+
51
+ if checkpoint is not None:
52
+ model.load_checkpoint(checkpoint)
53
+
54
+ if is_eval:
55
+ model.eval()
56
+
57
+ if device == "cpu":
58
+ model = model.float()
59
+
60
+ return model.to(device)
61
+
62
+
63
+ def load_preprocess(config):
64
+ """
65
+ Load preprocessor configs and construct preprocessors.
66
+
67
+ If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing.
68
+
69
+ Args:
70
+ config (dict): preprocessor configs.
71
+
72
+ Returns:
73
+ vis_processors (dict): preprocessors for visual inputs.
74
+ txt_processors (dict): preprocessors for text inputs.
75
+
76
+ Key is "train" or "eval" for processors used in training and evaluation respectively.
77
+ """
78
+
79
+ def _build_proc_from_cfg(cfg):
80
+ return (
81
+ registry.get_processor_class(cfg.name).from_config(cfg)
82
+ if cfg is not None
83
+ else BaseProcessor()
84
+ )
85
+
86
+ vis_processors = dict()
87
+ txt_processors = dict()
88
+
89
+ vis_proc_cfg = config.get("vis_processor")
90
+ txt_proc_cfg = config.get("text_processor")
91
+
92
+ if vis_proc_cfg is not None:
93
+ vis_train_cfg = vis_proc_cfg.get("train")
94
+ vis_eval_cfg = vis_proc_cfg.get("eval")
95
+ else:
96
+ vis_train_cfg = None
97
+ vis_eval_cfg = None
98
+
99
+ vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg)
100
+ vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg)
101
+
102
+ if txt_proc_cfg is not None:
103
+ txt_train_cfg = txt_proc_cfg.get("train")
104
+ txt_eval_cfg = txt_proc_cfg.get("eval")
105
+ else:
106
+ txt_train_cfg = None
107
+ txt_eval_cfg = None
108
+
109
+ txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg)
110
+ txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg)
111
+
112
+ return vis_processors, txt_processors
113
+
114
+
115
+ def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
116
+ """
117
+ Load model and its related preprocessors.
118
+
119
+ List all available models and types in registry:
120
+ >>> from minigpt4.models import model_zoo
121
+ >>> print(model_zoo)
122
+
123
+ Args:
124
+ name (str): name of the model.
125
+ model_type (str): type of the model.
126
+ is_eval (bool): whether the model is in eval mode. Default: False.
127
+ device (str): device to use. Default: "cpu".
128
+
129
+ Returns:
130
+ model (torch.nn.Module): model.
131
+ vis_processors (dict): preprocessors for visual inputs.
132
+ txt_processors (dict): preprocessors for text inputs.
133
+ """
134
+ model_cls = registry.get_model_class(name)
135
+
136
+ # load model
137
+ model = model_cls.from_pretrained(model_type=model_type)
138
+
139
+ if is_eval:
140
+ model.eval()
141
+
142
+ # load preprocess
143
+ cfg = OmegaConf.load(model_cls.default_config_path(model_type))
144
+ if cfg is not None:
145
+ preprocess_cfg = cfg.preprocess
146
+
147
+ vis_processors, txt_processors = load_preprocess(preprocess_cfg)
148
+ else:
149
+ vis_processors, txt_processors = None, None
150
+ logging.info(
151
+ f"""No default preprocess for model {name} ({model_type}).
152
+ This can happen if the model is not finetuned on downstream datasets,
153
+ or it is not intended for direct use without finetuning.
154
+ """
155
+ )
156
+
157
+ if device == "cpu" or device == torch.device("cpu"):
158
+ model = model.float()
159
+
160
+ return model.to(device), vis_processors, txt_processors
161
+
162
+
163
+ class ModelZoo:
164
+ """
165
+ A utility class to create string representation of available model architectures and types.
166
+
167
+ >>> from minigpt4.models import model_zoo
168
+ >>> # list all available models
169
+ >>> print(model_zoo)
170
+ >>> # show total number of models
171
+ >>> print(len(model_zoo))
172
+ """
173
+
174
+ def __init__(self) -> None:
175
+ self.model_zoo = {
176
+ k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys())
177
+ for k, v in registry.mapping["model_name_mapping"].items()
178
+ }
179
+
180
+ def __str__(self) -> str:
181
+ return (
182
+ "=" * 50
183
+ + "\n"
184
+ + f"{'Architectures':<30} {'Types'}\n"
185
+ + "=" * 50
186
+ + "\n"
187
+ + "\n".join(
188
+ [
189
+ f"{name:<30} {', '.join(types)}"
190
+ for name, types in self.model_zoo.items()
191
+ ]
192
+ )
193
+ )
194
+
195
+ def __iter__(self):
196
+ return iter(self.model_zoo.items())
197
+
198
+ def __len__(self):
199
+ return sum([len(v) for v in self.model_zoo.values()])
200
+
201
+
202
+ model_zoo = ModelZoo()
minigpt4/models/__pycache__/Qformer.cpython-39.pyc ADDED
Binary file (30.9 kB). View file
 
minigpt4/models/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (6.14 kB). View file
 
minigpt4/models/__pycache__/base_model.cpython-39.pyc ADDED
Binary file (7.21 kB). View file
 
minigpt4/models/__pycache__/eva_vit.cpython-39.pyc ADDED
Binary file (14 kB). View file
 
minigpt4/models/__pycache__/minigpt4.cpython-39.pyc ADDED
Binary file (5.35 kB). View file
 
minigpt4/models/__pycache__/minigpt_base.cpython-39.pyc ADDED
Binary file (14.4 kB). View file
 
minigpt4/models/__pycache__/minigpt_v2.cpython-39.pyc ADDED
Binary file (3.98 kB). View file
 
minigpt4/models/__pycache__/modeling_llama.cpython-39.pyc ADDED
Binary file (3.87 kB). View file
 
minigpt4/models/base_model.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import os
9
+ import logging
10
+ import contextlib
11
+
12
+ from omegaconf import OmegaConf
13
+ import numpy as np
14
+ import torch
15
+ import torch.nn as nn
16
+ from transformers import LlamaTokenizer
17
+ from peft import (
18
+ LoraConfig,
19
+ get_peft_model,
20
+ prepare_model_for_int8_training,
21
+ )
22
+
23
+ from minigpt4.common.dist_utils import download_cached_file
24
+ from minigpt4.common.utils import get_abs_path, is_url
25
+ from minigpt4.models.eva_vit import create_eva_vit_g
26
+ from minigpt4.models.modeling_llama import LlamaForCausalLM
27
+
28
+
29
+
30
+ class BaseModel(nn.Module):
31
+ """Base class for models."""
32
+
33
+ def __init__(self):
34
+ super().__init__()
35
+
36
+ @property
37
+ def device(self):
38
+ return list(self.parameters())[-1].device
39
+
40
+ def load_checkpoint(self, url_or_filename):
41
+ """
42
+ Load from a finetuned checkpoint.
43
+
44
+ This should expect no mismatch in the model keys and the checkpoint keys.
45
+ """
46
+
47
+ if is_url(url_or_filename):
48
+ cached_file = download_cached_file(
49
+ url_or_filename, check_hash=False, progress=True
50
+ )
51
+ checkpoint = torch.load(cached_file, map_location="cpu")
52
+ elif os.path.isfile(url_or_filename):
53
+ checkpoint = torch.load(url_or_filename, map_location="cpu")
54
+ else:
55
+ raise RuntimeError("checkpoint url or path is invalid")
56
+
57
+ if "model" in checkpoint.keys():
58
+ state_dict = checkpoint["model"]
59
+ else:
60
+ state_dict = checkpoint
61
+
62
+ msg = self.load_state_dict(state_dict, strict=False)
63
+
64
+ logging.info("Missing keys {}".format(msg.missing_keys))
65
+ logging.info("load checkpoint from %s" % url_or_filename)
66
+
67
+ return msg
68
+
69
+ @classmethod
70
+ def from_pretrained(cls, model_type):
71
+ """
72
+ Build a pretrained model from default configuration file, specified by model_type.
73
+
74
+ Args:
75
+ - model_type (str): model type, specifying architecture and checkpoints.
76
+
77
+ Returns:
78
+ - model (nn.Module): pretrained or finetuned model, depending on the configuration.
79
+ """
80
+ model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
81
+ model = cls.from_config(model_cfg)
82
+
83
+ return model
84
+
85
+ @classmethod
86
+ def default_config_path(cls, model_type):
87
+ assert (
88
+ model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
89
+ ), "Unknown model type {}".format(model_type)
90
+ return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
91
+
92
+ def load_checkpoint_from_config(self, cfg, **kwargs):
93
+ """
94
+ Load checkpoint as specified in the config file.
95
+
96
+ If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
97
+ When loading the pretrained model, each task-specific architecture may define their
98
+ own load_from_pretrained() method.
99
+ """
100
+ load_finetuned = cfg.get("load_finetuned", True)
101
+ if load_finetuned:
102
+ finetune_path = cfg.get("finetuned", None)
103
+ assert (
104
+ finetune_path is not None
105
+ ), "Found load_finetuned is True, but finetune_path is None."
106
+ self.load_checkpoint(url_or_filename=finetune_path)
107
+ else:
108
+ # load pre-trained weights
109
+ pretrain_path = cfg.get("pretrained", None)
110
+ assert "Found load_finetuned is False, but pretrain_path is None."
111
+ self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
112
+
113
+ def before_evaluation(self, **kwargs):
114
+ pass
115
+
116
+ def show_n_params(self, return_str=True):
117
+ tot = 0
118
+ for p in self.parameters():
119
+ w = 1
120
+ for x in p.shape:
121
+ w *= x
122
+ tot += w
123
+ if return_str:
124
+ if tot >= 1e6:
125
+ return "{:.1f}M".format(tot / 1e6)
126
+ else:
127
+ return "{:.1f}K".format(tot / 1e3)
128
+ else:
129
+ return tot
130
+
131
+ def maybe_autocast(self, dtype=torch.float16):
132
+ # if on cpu, don't use autocast
133
+ # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
134
+ enable_autocast = self.device != torch.device("cpu")
135
+
136
+ if enable_autocast:
137
+ return torch.cuda.amp.autocast(dtype=dtype)
138
+ else:
139
+ return contextlib.nullcontext()
140
+
141
+ @classmethod
142
+ def init_vision_encoder(
143
+ cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision, freeze
144
+ ):
145
+ logging.info('Loading VIT')
146
+
147
+ assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
148
+ if not freeze:
149
+ precision = "fp32" # fp16 is not for training
150
+
151
+ visual_encoder = create_eva_vit_g(
152
+ img_size, drop_path_rate, use_grad_checkpoint, precision
153
+ )
154
+
155
+ ln_vision = LayerNorm(visual_encoder.num_features)
156
+
157
+ if freeze:
158
+ for name, param in visual_encoder.named_parameters():
159
+ param.requires_grad = False
160
+ visual_encoder = visual_encoder.eval()
161
+ visual_encoder.train = disabled_train
162
+ for name, param in ln_vision.named_parameters():
163
+ param.requires_grad = False
164
+ ln_vision = ln_vision.eval()
165
+ ln_vision.train = disabled_train
166
+ logging.info("freeze vision encoder")
167
+
168
+ logging.info('Loading VIT Done')
169
+ return visual_encoder, ln_vision
170
+
171
+ # lora_target_modules=["q_proj","v_proj"], **lora_kargs):
172
+ def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
173
+ lora_target_modules=["q_proj","k_proj"], **lora_kargs):
174
+ logging.info('Loading LLAMA')
175
+ llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
176
+ llama_tokenizer.pad_token = "$$"
177
+
178
+ if low_resource:
179
+ llama_model = LlamaForCausalLM.from_pretrained(
180
+ llama_model_path,
181
+ torch_dtype=torch.float16,
182
+ load_in_8bit=True,
183
+ device_map={'': low_res_device}
184
+ )
185
+ else:
186
+ llama_model = LlamaForCausalLM.from_pretrained(
187
+ llama_model_path,
188
+ torch_dtype=torch.float16,
189
+ )
190
+
191
+ if lora_r > 0:
192
+ llama_model = prepare_model_for_int8_training(llama_model)
193
+ loraconfig = LoraConfig(
194
+ r=lora_r,
195
+ bias="none",
196
+ task_type="CAUSAL_LM",
197
+ target_modules=lora_target_modules,
198
+ **lora_kargs
199
+ )
200
+
201
+ print("loraconfig:", loraconfig)
202
+ llama_model = get_peft_model(llama_model, loraconfig)
203
+
204
+ llama_model.print_trainable_parameters()
205
+
206
+ else:
207
+ for name, param in llama_model.named_parameters():
208
+ param.requires_grad = False
209
+ logging.info('Loading LLAMA Done')
210
+ return llama_model, llama_tokenizer
211
+
212
+
213
+ def load_from_pretrained(self, url_or_filename):
214
+ if is_url(url_or_filename):
215
+ cached_file = download_cached_file(
216
+ url_or_filename, check_hash=False, progress=True
217
+ )
218
+ checkpoint = torch.load(cached_file, map_location="cpu")
219
+ elif os.path.isfile(url_or_filename):
220
+ checkpoint = torch.load(url_or_filename, map_location="cpu")
221
+ else:
222
+ raise RuntimeError("checkpoint url or path is invalid")
223
+
224
+ state_dict = checkpoint["model"]
225
+
226
+ msg = self.load_state_dict(state_dict, strict=False)
227
+
228
+ # logging.info("Missing keys {}".format(msg.missing_keys))
229
+ logging.info("load checkpoint from %s" % url_or_filename)
230
+
231
+ return msg
232
+
233
+
234
+ def disabled_train(self, mode=True):
235
+ """Overwrite model.train with this function to make sure train/eval mode
236
+ does not change anymore."""
237
+ return self
238
+
239
+
240
+ class LayerNorm(nn.LayerNorm):
241
+ """Subclass torch's LayerNorm to handle fp16."""
242
+
243
+ def forward(self, x: torch.Tensor):
244
+ orig_type = x.dtype
245
+ ret = super().forward(x.type(torch.float32))
246
+ return ret.type(orig_type)
247
+
248
+
249
+
250
+
251
+
minigpt4/models/eva_vit.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Based on EVA, BEIT, timm and DeiT code bases
2
+ # https://github.com/baaivision/EVA
3
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm
4
+ # https://github.com/microsoft/unilm/tree/master/beit
5
+ # https://github.com/facebookresearch/deit/
6
+ # https://github.com/facebookresearch/dino
7
+ # --------------------------------------------------------'
8
+ import math
9
+ from functools import partial
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint as checkpoint
15
+ from timm.models.layers import drop_path, to_2tuple, trunc_normal_
16
+ from timm.models.registry import register_model
17
+
18
+ from minigpt4.common.dist_utils import download_cached_file
19
+
20
+ def _cfg(url='', **kwargs):
21
+ return {
22
+ 'url': url,
23
+ 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
24
+ 'crop_pct': .9, 'interpolation': 'bicubic',
25
+ 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
26
+ **kwargs
27
+ }
28
+
29
+
30
+ class DropPath(nn.Module):
31
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
32
+ """
33
+ def __init__(self, drop_prob=None):
34
+ super(DropPath, self).__init__()
35
+ self.drop_prob = drop_prob
36
+
37
+ def forward(self, x):
38
+ return drop_path(x, self.drop_prob, self.training)
39
+
40
+ def extra_repr(self) -> str:
41
+ return 'p={}'.format(self.drop_prob)
42
+
43
+
44
+ class Mlp(nn.Module):
45
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
46
+ super().__init__()
47
+ out_features = out_features or in_features
48
+ hidden_features = hidden_features or in_features
49
+ self.fc1 = nn.Linear(in_features, hidden_features)
50
+ self.act = act_layer()
51
+ self.fc2 = nn.Linear(hidden_features, out_features)
52
+ self.drop = nn.Dropout(drop)
53
+
54
+ def forward(self, x):
55
+ x = self.fc1(x)
56
+ x = self.act(x)
57
+ # x = self.drop(x)
58
+ # commit this for the orignal BERT implement
59
+ x = self.fc2(x)
60
+ x = self.drop(x)
61
+ return x
62
+
63
+
64
+ class Attention(nn.Module):
65
+ def __init__(
66
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
67
+ proj_drop=0., window_size=None, attn_head_dim=None):
68
+ super().__init__()
69
+ self.num_heads = num_heads
70
+ head_dim = dim // num_heads
71
+ if attn_head_dim is not None:
72
+ head_dim = attn_head_dim
73
+ all_head_dim = head_dim * self.num_heads
74
+ self.scale = qk_scale or head_dim ** -0.5
75
+
76
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
77
+ if qkv_bias:
78
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
79
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
80
+ else:
81
+ self.q_bias = None
82
+ self.v_bias = None
83
+
84
+ if window_size:
85
+ self.window_size = window_size
86
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
87
+ self.relative_position_bias_table = nn.Parameter(
88
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
89
+ # cls to token & token 2 cls & cls to cls
90
+
91
+ # get pair-wise relative position index for each token inside the window
92
+ coords_h = torch.arange(window_size[0])
93
+ coords_w = torch.arange(window_size[1])
94
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
95
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
96
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
97
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
98
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
99
+ relative_coords[:, :, 1] += window_size[1] - 1
100
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
101
+ relative_position_index = \
102
+ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
103
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
104
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
105
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
106
+ relative_position_index[0, 0] = self.num_relative_distance - 1
107
+
108
+ self.register_buffer("relative_position_index", relative_position_index)
109
+ else:
110
+ self.window_size = None
111
+ self.relative_position_bias_table = None
112
+ self.relative_position_index = None
113
+
114
+ self.attn_drop = nn.Dropout(attn_drop)
115
+ self.proj = nn.Linear(all_head_dim, dim)
116
+ self.proj_drop = nn.Dropout(proj_drop)
117
+
118
+ def forward(self, x, rel_pos_bias=None):
119
+ B, N, C = x.shape
120
+ qkv_bias = None
121
+ if self.q_bias is not None:
122
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
123
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
124
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
125
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
126
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
127
+
128
+ q = q * self.scale
129
+ attn = (q @ k.transpose(-2, -1))
130
+
131
+ if self.relative_position_bias_table is not None:
132
+ relative_position_bias = \
133
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
134
+ self.window_size[0] * self.window_size[1] + 1,
135
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
136
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
137
+ attn = attn + relative_position_bias.unsqueeze(0)
138
+
139
+ if rel_pos_bias is not None:
140
+ attn = attn + rel_pos_bias
141
+
142
+ attn = attn.softmax(dim=-1)
143
+ attn = self.attn_drop(attn)
144
+
145
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
146
+ x = self.proj(x)
147
+ x = self.proj_drop(x)
148
+ return x
149
+
150
+
151
+ class Block(nn.Module):
152
+
153
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
154
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
155
+ window_size=None, attn_head_dim=None):
156
+ super().__init__()
157
+ self.norm1 = norm_layer(dim)
158
+ self.attn = Attention(
159
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
160
+ attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
161
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
162
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
163
+ self.norm2 = norm_layer(dim)
164
+ mlp_hidden_dim = int(dim * mlp_ratio)
165
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
166
+
167
+ if init_values is not None and init_values > 0:
168
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
169
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
170
+ else:
171
+ self.gamma_1, self.gamma_2 = None, None
172
+
173
+ def forward(self, x, rel_pos_bias=None):
174
+ if self.gamma_1 is None:
175
+ x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
176
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
177
+ else:
178
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
179
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
180
+ return x
181
+
182
+
183
+ class PatchEmbed(nn.Module):
184
+ """ Image to Patch Embedding
185
+ """
186
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
187
+ super().__init__()
188
+ img_size = to_2tuple(img_size)
189
+ patch_size = to_2tuple(patch_size)
190
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
191
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
192
+ self.img_size = img_size
193
+ self.patch_size = patch_size
194
+ self.num_patches = num_patches
195
+
196
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
197
+
198
+ def forward(self, x, **kwargs):
199
+ B, C, H, W = x.shape
200
+ # FIXME look at relaxing size constraints
201
+ assert H == self.img_size[0] and W == self.img_size[1], \
202
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
203
+ x = self.proj(x).flatten(2).transpose(1, 2)
204
+ return x
205
+
206
+
207
+ class RelativePositionBias(nn.Module):
208
+
209
+ def __init__(self, window_size, num_heads):
210
+ super().__init__()
211
+ self.window_size = window_size
212
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
213
+ self.relative_position_bias_table = nn.Parameter(
214
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
215
+ # cls to token & token 2 cls & cls to cls
216
+
217
+ # get pair-wise relative position index for each token inside the window
218
+ coords_h = torch.arange(window_size[0])
219
+ coords_w = torch.arange(window_size[1])
220
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
221
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
222
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
223
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
224
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
225
+ relative_coords[:, :, 1] += window_size[1] - 1
226
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
227
+ relative_position_index = \
228
+ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
229
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
230
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
231
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
232
+ relative_position_index[0, 0] = self.num_relative_distance - 1
233
+
234
+ self.register_buffer("relative_position_index", relative_position_index)
235
+
236
+ # trunc_normal_(self.relative_position_bias_table, std=.02)
237
+
238
+ def forward(self):
239
+ relative_position_bias = \
240
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
241
+ self.window_size[0] * self.window_size[1] + 1,
242
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
243
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
244
+
245
+
246
+ class VisionTransformer(nn.Module):
247
+ """ Vision Transformer with support for patch or hybrid CNN input stage
248
+ """
249
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
250
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
251
+ drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
252
+ use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
253
+ use_mean_pooling=True, init_scale=0.001, use_checkpoint=False):
254
+ super().__init__()
255
+ self.image_size = img_size
256
+ self.num_classes = num_classes
257
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
258
+
259
+ self.patch_embed = PatchEmbed(
260
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
261
+ num_patches = self.patch_embed.num_patches
262
+
263
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
264
+ if use_abs_pos_emb:
265
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
266
+ else:
267
+ self.pos_embed = None
268
+ self.pos_drop = nn.Dropout(p=drop_rate)
269
+
270
+ if use_shared_rel_pos_bias:
271
+ self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
272
+ else:
273
+ self.rel_pos_bias = None
274
+ self.use_checkpoint = use_checkpoint
275
+
276
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
277
+ self.use_rel_pos_bias = use_rel_pos_bias
278
+ self.blocks = nn.ModuleList([
279
+ Block(
280
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
281
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
282
+ init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
283
+ for i in range(depth)])
284
+ # self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
285
+ # self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
286
+ # self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
287
+
288
+ if self.pos_embed is not None:
289
+ trunc_normal_(self.pos_embed, std=.02)
290
+ trunc_normal_(self.cls_token, std=.02)
291
+ # trunc_normal_(self.mask_token, std=.02)
292
+ # if isinstance(self.head, nn.Linear):
293
+ # trunc_normal_(self.head.weight, std=.02)
294
+ self.apply(self._init_weights)
295
+ self.fix_init_weight()
296
+ # if isinstance(self.head, nn.Linear):
297
+ # self.head.weight.data.mul_(init_scale)
298
+ # self.head.bias.data.mul_(init_scale)
299
+
300
+ def fix_init_weight(self):
301
+ def rescale(param, layer_id):
302
+ param.div_(math.sqrt(2.0 * layer_id))
303
+
304
+ for layer_id, layer in enumerate(self.blocks):
305
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
306
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
307
+
308
+ def _init_weights(self, m):
309
+ if isinstance(m, nn.Linear):
310
+ trunc_normal_(m.weight, std=.02)
311
+ if isinstance(m, nn.Linear) and m.bias is not None:
312
+ nn.init.constant_(m.bias, 0)
313
+ elif isinstance(m, nn.LayerNorm):
314
+ nn.init.constant_(m.bias, 0)
315
+ nn.init.constant_(m.weight, 1.0)
316
+
317
+ def get_classifier(self):
318
+ return self.head
319
+
320
+ def reset_classifier(self, num_classes, global_pool=''):
321
+ self.num_classes = num_classes
322
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
323
+
324
+ def forward_features(self, x):
325
+ x = self.patch_embed(x)
326
+ batch_size, seq_len, _ = x.size()
327
+
328
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
329
+ x = torch.cat((cls_tokens, x), dim=1)
330
+ if self.pos_embed is not None:
331
+ x = x + self.pos_embed
332
+ x = self.pos_drop(x)
333
+
334
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
335
+ for blk in self.blocks:
336
+ if self.use_checkpoint:
337
+ x = checkpoint.checkpoint(blk, x, rel_pos_bias)
338
+ else:
339
+ x = blk(x, rel_pos_bias)
340
+ return x
341
+ # x = self.norm(x)
342
+
343
+ # if self.fc_norm is not None:
344
+ # t = x[:, 1:, :]
345
+ # return self.fc_norm(t.mean(1))
346
+ # else:
347
+ # return x[:, 0]
348
+
349
+ def forward(self, x):
350
+ x = self.forward_features(x)
351
+ # x = self.head(x)
352
+ return x
353
+
354
+ def get_intermediate_layers(self, x):
355
+ x = self.patch_embed(x)
356
+ batch_size, seq_len, _ = x.size()
357
+
358
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
359
+ x = torch.cat((cls_tokens, x), dim=1)
360
+ if self.pos_embed is not None:
361
+ x = x + self.pos_embed
362
+ x = self.pos_drop(x)
363
+
364
+ features = []
365
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
366
+ for blk in self.blocks:
367
+ x = blk(x, rel_pos_bias)
368
+ features.append(x)
369
+
370
+ return features
371
+
372
+
373
+ def interpolate_pos_embed(model, checkpoint_model):
374
+ if 'pos_embed' in checkpoint_model:
375
+ pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
376
+ embedding_size = pos_embed_checkpoint.shape[-1]
377
+ num_patches = model.patch_embed.num_patches
378
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches
379
+ # height (== width) for the checkpoint position embedding
380
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
381
+ # height (== width) for the new position embedding
382
+ new_size = int(num_patches ** 0.5)
383
+ # class_token and dist_token are kept unchanged
384
+ if orig_size != new_size:
385
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
386
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
387
+ # only the position tokens are interpolated
388
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
389
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
390
+ pos_tokens = torch.nn.functional.interpolate(
391
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
392
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
393
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
394
+ checkpoint_model['pos_embed'] = new_pos_embed
395
+
396
+
397
+ def convert_weights_to_fp16(model: nn.Module):
398
+ """Convert applicable model parameters to fp16"""
399
+
400
+ def _convert_weights_to_fp16(l):
401
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
402
+ l.weight.data = l.weight.data.half()
403
+ if l.bias is not None:
404
+ l.bias.data = l.bias.data.half()
405
+
406
+ # if isinstance(l, (nn.MultiheadAttention, Attention)):
407
+ # for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
408
+ # tensor = getattr(l, attr)
409
+ # if tensor is not None:
410
+ # tensor.data = tensor.data.half()
411
+
412
+ model.apply(_convert_weights_to_fp16)
413
+
414
+
415
+ def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"):
416
+ model = VisionTransformer(
417
+ img_size=img_size,
418
+ patch_size=14,
419
+ use_mean_pooling=False,
420
+ embed_dim=1408,
421
+ depth=39,
422
+ num_heads=1408//88,
423
+ mlp_ratio=4.3637,
424
+ qkv_bias=True,
425
+ drop_path_rate=drop_path_rate,
426
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
427
+ use_checkpoint=use_checkpoint,
428
+ )
429
+ url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
430
+ cached_file = download_cached_file(
431
+ url, check_hash=False, progress=True
432
+ )
433
+ state_dict = torch.load(cached_file, map_location="cpu")
434
+ interpolate_pos_embed(model,state_dict)
435
+
436
+ incompatible_keys = model.load_state_dict(state_dict, strict=False)
437
+ # print(incompatible_keys)
438
+
439
+ if precision == "fp16":
440
+ # model.to("cuda")
441
+ convert_weights_to_fp16(model)
442
+ return model
minigpt4/models/minigpt4.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import random
3
+
4
+ import torch
5
+ from torch.cuda.amp import autocast as autocast
6
+ import torch.nn as nn
7
+
8
+ from minigpt4.common.registry import registry
9
+ from minigpt4.models.base_model import disabled_train
10
+ from minigpt4.models.minigpt_base import MiniGPTBase
11
+ from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
12
+
13
+
14
+ @registry.register_model("minigpt4")
15
+ class MiniGPT4(MiniGPTBase):
16
+ """
17
+ MiniGPT-4 model
18
+ """
19
+
20
+ PRETRAINED_MODEL_CONFIG_DICT = {
21
+ "pretrain_vicuna0": "configs/models/minigpt4_vicuna0.yaml",
22
+ "pretrain_llama2": "configs/models/minigpt4_llama2.yaml",
23
+ }
24
+
25
+ def __init__(
26
+ self,
27
+ vit_model="eva_clip_g",
28
+ q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
29
+ img_size=224,
30
+ drop_path_rate=0,
31
+ use_grad_checkpoint=False,
32
+ vit_precision="fp16",
33
+ freeze_vit=True,
34
+ has_qformer=True,
35
+ freeze_qformer=True,
36
+ num_query_token=32,
37
+ llama_model="",
38
+ prompt_path="",
39
+ prompt_template="",
40
+ max_txt_len=32,
41
+ end_sym='\n',
42
+ low_resource=False, # use 8 bit and put vit in cpu
43
+ device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
44
+ ):
45
+ super().__init__(
46
+ vit_model=vit_model,
47
+ img_size=img_size,
48
+ drop_path_rate=drop_path_rate,
49
+ use_grad_checkpoint=use_grad_checkpoint,
50
+ vit_precision=vit_precision,
51
+ freeze_vit=freeze_vit,
52
+ llama_model=llama_model,
53
+ max_txt_len=max_txt_len,
54
+ end_sym=end_sym,
55
+ low_resource=low_resource,
56
+ device_8bit=device_8bit,
57
+ )
58
+
59
+ self.has_qformer = has_qformer
60
+ if self.has_qformer:
61
+ print('Loading Q-Former')
62
+ self.Qformer, self.query_tokens = self.init_Qformer(
63
+ num_query_token, self.visual_encoder.num_features, freeze_qformer
64
+ )
65
+ self.load_from_pretrained(url_or_filename=q_former_model) # load q-former weights here
66
+
67
+ img_f_dim = self.Qformer.config.hidden_size
68
+ print('Loading Q-Former Done')
69
+ else:
70
+ img_f_dim = self.visual_encoder.num_features * 4
71
+ print('Do not use Q-Former here.')
72
+
73
+ self.llama_proj = nn.Linear(
74
+ img_f_dim, self.llama_model.config.hidden_size
75
+ )
76
+
77
+ if prompt_path:
78
+ with open(prompt_path, 'r') as f:
79
+ raw_prompts = f.read().splitlines()
80
+ filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<VideoHere>" in raw_prompt]
81
+ self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
82
+ print('Load {} training prompts'.format(len(self.prompt_list)))
83
+ print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
84
+ else:
85
+ self.prompt_list = []
86
+
87
+ @classmethod
88
+ def init_Qformer(cls, num_query_token, vision_width, freeze):
89
+ encoder_config = BertConfig.from_pretrained("bert-base-uncased")
90
+ encoder_config.encoder_width = vision_width
91
+ # insert cross-attention layer every other block
92
+ encoder_config.add_cross_attention = True
93
+ encoder_config.cross_attention_freq = 2
94
+ encoder_config.query_length = num_query_token
95
+ Qformer = BertLMHeadModel(config=encoder_config)
96
+ query_tokens = nn.Parameter(
97
+ torch.zeros(1, num_query_token, encoder_config.hidden_size)
98
+ )
99
+ query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
100
+
101
+ Qformer.cls = None
102
+ Qformer.bert.embeddings.word_embeddings = None
103
+ Qformer.bert.embeddings.position_embeddings = None
104
+ for layer in Qformer.bert.encoder.layer:
105
+ layer.output = None
106
+ layer.intermediate = None
107
+
108
+ if freeze:
109
+ for name, param in Qformer.named_parameters():
110
+ param.requires_grad = False
111
+ Qformer = Qformer.eval()
112
+ Qformer.train = disabled_train
113
+ query_tokens.requires_grad = False
114
+ logging.info("freeze Qformer")
115
+
116
+ return Qformer, query_tokens
117
+
118
+ def encode_img(self, image):
119
+ device = image.device
120
+
121
+ if len(image.shape) > 4:
122
+ image = image.reshape(-1, *image.shape[-3:])
123
+
124
+ with self.maybe_autocast():
125
+ image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
126
+ if self.has_qformer:
127
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
128
+
129
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
130
+ query_output = self.Qformer.bert(
131
+ query_embeds=query_tokens,
132
+ encoder_hidden_states=image_embeds,
133
+ encoder_attention_mask=image_atts,
134
+ return_dict=True,
135
+ )
136
+
137
+ inputs_llama = self.llama_proj(query_output.last_hidden_state)
138
+ else:
139
+ image_embeds = image_embeds[:, 1:, :]
140
+ bs, pn, hs = image_embeds.shape
141
+ image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4))
142
+
143
+ inputs_llama = self.llama_proj(image_embeds)
144
+ atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
145
+ return inputs_llama, atts_llama
146
+
147
+ @classmethod
148
+ def from_config(cls, cfg):
149
+ vit_model = cfg.get("vit_model", "eva_clip_g")
150
+ q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
151
+ img_size = cfg.get("image_size")
152
+ num_query_token = cfg.get("num_query_token")
153
+ llama_model = cfg.get("llama_model")
154
+
155
+ drop_path_rate = cfg.get("drop_path_rate", 0)
156
+ use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
157
+ vit_precision = cfg.get("vit_precision", "fp16")
158
+ freeze_vit = cfg.get("freeze_vit", True)
159
+ has_qformer = cfg.get("has_qformer", True)
160
+ freeze_qformer = cfg.get("freeze_qformer", True)
161
+ low_resource = cfg.get("low_resource", False)
162
+ device_8bit = cfg.get("device_8bit", 0)
163
+
164
+ prompt_path = cfg.get("prompt_path", "")
165
+ prompt_template = cfg.get("prompt_template", "")
166
+ max_txt_len = cfg.get("max_txt_len", 32)
167
+ end_sym = cfg.get("end_sym", '\n')
168
+
169
+ model = cls(
170
+ vit_model=vit_model,
171
+ q_former_model=q_former_model,
172
+ img_size=img_size,
173
+ drop_path_rate=drop_path_rate,
174
+ use_grad_checkpoint=use_grad_checkpoint,
175
+ vit_precision=vit_precision,
176
+ freeze_vit=freeze_vit,
177
+ has_qformer=has_qformer,
178
+ freeze_qformer=freeze_qformer,
179
+ num_query_token=num_query_token,
180
+ llama_model=llama_model,
181
+ prompt_path=prompt_path,
182
+ prompt_template=prompt_template,
183
+ max_txt_len=max_txt_len,
184
+ end_sym=end_sym,
185
+ low_resource=low_resource,
186
+ device_8bit=device_8bit,
187
+ )
188
+
189
+ ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
190
+ if ckpt_path:
191
+ print("Load MiniGPT-4 Checkpoint: {}".format(ckpt_path))
192
+ ckpt = torch.load(ckpt_path, map_location="cpu")
193
+ msg = model.load_state_dict(ckpt['model'], strict=False)
194
+
195
+ return model
minigpt4/models/minigpt_base.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import random
3
+
4
+ import torch
5
+ from torch.cuda.amp import autocast as autocast
6
+ import torch.nn as nn
7
+
8
+ from minigpt4.common.registry import registry
9
+ from minigpt4.models.base_model import BaseModel
10
+ from transformers import StoppingCriteria, StoppingCriteriaList
11
+
12
+ from minigpt4.conversation.conversation import StoppingCriteriaSub
13
+
14
+
15
+ class Attention(nn.Module):
16
+ def __init__(self, output_dim, layers='256,128', dropout=0.3):
17
+ super(Attention, self).__init__()
18
+
19
+ dims = [1024, 1024, 1024, 4096, 4096, 4096, 4096]
20
+ self.features_count = 7
21
+
22
+ self.feats_prep = nn.ModuleList()
23
+ for i in range(len(dims)):
24
+ self.feats_prep.append(self.MLP(dims[i], layers, dropout))
25
+
26
+ layers_list = list(map(lambda x: int(x), layers.split(',')))
27
+ hiddendim = layers_list[-1] * self.features_count
28
+ self.attention_mlp = self.MLP(hiddendim, layers, dropout)
29
+
30
+ self.fc_att = nn.Linear(layers_list[-1], self.features_count)
31
+ self.fc_out = nn.Linear(layers_list[-1], output_dim)
32
+ self.softmax = nn.Softmax(dim=1)
33
+
34
+ def MLP(self, input_dim, layers, dropout):
35
+ all_layers = []
36
+ layers = list(map(lambda x: int(x), layers.split(',')))
37
+ for i in range(0, len(layers)):
38
+ all_layers.append(nn.Linear(input_dim, layers[i]))
39
+ all_layers.append(nn.ReLU())
40
+ all_layers.append(nn.Dropout(dropout))
41
+ input_dim = layers[i]
42
+ module = nn.Sequential(*all_layers)
43
+ return module
44
+
45
+ def forward(self, feats): # [1, 4, 4096]
46
+
47
+ feats_hidden = []
48
+ for i in range(self.features_count):
49
+ feats_hidden.append(self.feats_prep[i](feats[i])) # [batch_size, 128]
50
+
51
+ # import pdb
52
+ # pdb.set_trace()
53
+
54
+ multi_hidden1 = torch.cat(feats_hidden, dim=1) # [batch_size, 128*features_count]
55
+ multi_hidden2 = torch.stack(feats_hidden, dim=2) # [batch_size, 128, features_count]
56
+
57
+ # multi_hidden1 = torch.reshape(x, (x.size(0), -1)) # [batch_size, 128*features_count] [1, 512]
58
+ # multi_hidden2 = torch.transpose(x, 1, 2) # [batch_size, 128, features_count] [1, 128, 4]
59
+
60
+
61
+ attention = self.attention_mlp(multi_hidden1)
62
+ attention = self.fc_att(attention)
63
+ attention = torch.unsqueeze(attention, 2) # [batch_size, features_count, 1]
64
+
65
+ fused_feat = torch.matmul(multi_hidden2, attention)
66
+ fused_feat = fused_feat.squeeze(dim=2) # [batch_size, 128]
67
+ # fused_feat = fused_feat.squeeze() # [batch_size, 128]
68
+ emos_out = self.fc_out(fused_feat)
69
+ emos_pred = self.softmax(emos_out)
70
+ return emos_pred
71
+
72
+
73
+ class MiniGPTBase(BaseModel):
74
+ """
75
+ Base class for MiniGPT-4 and MiniGPT-v2
76
+ """
77
+
78
+ def __init__(
79
+ self,
80
+ vit_model="eva_clip_g",
81
+ img_size=224,
82
+ drop_path_rate=0,
83
+ use_grad_checkpoint=False,
84
+ vit_precision="fp16",
85
+ freeze_vit=True,
86
+ llama_model="",
87
+ max_txt_len=32,
88
+ max_context_len=3800,
89
+ prompt_template="",
90
+ end_sym='\n',
91
+ low_resource=False, # use 8 bit and put vit in cpu
92
+ device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
93
+ lora_r=0, # lora_r means lora is not used
94
+ lora_target_modules=["q_proj", "v_proj"],
95
+ lora_alpha=16,
96
+ lora_dropout=0.05,
97
+ ):
98
+ super().__init__()
99
+
100
+ self.llama_model, self.llama_tokenizer = self.init_llm(
101
+ llama_model_path=llama_model,
102
+ low_resource=low_resource,
103
+ low_res_device=device_8bit,
104
+ lora_r=lora_r,
105
+ lora_target_modules=lora_target_modules,
106
+ lora_alpha=lora_alpha,
107
+ lora_dropout=lora_dropout,
108
+ )
109
+
110
+ self.visual_encoder, self.ln_vision = self.init_vision_encoder(
111
+ vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit
112
+ )
113
+
114
+ self.max_txt_len = max_txt_len
115
+ self.max_context_len = max_context_len
116
+ self.end_sym = end_sym
117
+
118
+ self.prompt_template = prompt_template
119
+ self.prompt_list = []
120
+
121
+ self.attention = Attention(output_dim=6)
122
+ self.CEloss = nn.CrossEntropyLoss()
123
+
124
+ def vit_to_cpu(self):
125
+ self.ln_vision.to("cpu")
126
+ self.ln_vision.float()
127
+ self.visual_encoder.to("cpu")
128
+ self.visual_encoder.float()
129
+
130
+ def get_context_emb(self, prompt, img_list):
131
+ device = img_list[0].device
132
+
133
+ prompt_segs = prompt.split('<VideoHere>')
134
+ assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
135
+ seg_tokens = [
136
+ self.llama_tokenizer(
137
+ seg, return_tensors="pt", add_special_tokens=i==0).to(device).input_ids # only add bos to the first seg
138
+ for i, seg in enumerate(prompt_segs)
139
+ ]
140
+ seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
141
+
142
+ mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
143
+ mixed_embs = torch.cat(mixed_embs, dim=1)
144
+ return mixed_embs
145
+
146
+ def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
147
+ if prompts is None or len(prompts) == 0:
148
+ # prompts is not provided, just return the original image embedding
149
+ return img_embeds, atts_img
150
+ elif img_embeds is None:
151
+ # prompt is provided but there is no image embedding. return the prompt embedding in right padding
152
+ self.llama_tokenizer.padding_side = "right"
153
+ prompt_tokens = self.llama_tokenizer(
154
+ prompts,
155
+ return_tensors="pt",
156
+ padding="longest",
157
+ add_special_tokens=False
158
+ ).to(self.device)
159
+ prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
160
+ atts_prompt = prompt_tokens.attention_mask
161
+ return prompt_embeds, atts_prompt
162
+ else:
163
+ # return the multi-modal embedding in right padding
164
+ emb_lists = []
165
+ if isinstance(prompts, str):
166
+ prompts = [prompts] * len(img_embeds)
167
+
168
+ for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
169
+ each_video_feature = each_img_embed[-4:] # cls_tk_feats
170
+ each_img_embed = each_img_embed[:-4]
171
+ # each_video_feature = each_img_embed[-3:] #
172
+ # each_img_embed = each_img_embed[:-3]
173
+
174
+ pn = each_img_embed.shape[-2]
175
+ if lengths is not None:
176
+ each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
177
+ each_img_embed = each_img_embed[:lengths[idx] * pn]
178
+
179
+ p_segs = each_prompt.split('<VideoHere>')
180
+ interleave_emb = []
181
+ for idx, seg in enumerate(p_segs[:-1]):
182
+ p_tokens = self.llama_tokenizer(
183
+ seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
184
+ p_embed = self.embed_tokens(p_tokens.input_ids)
185
+ interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx * pn:(idx + 1) * pn]], dim=1))
186
+ wrapped_emb = torch.cat(interleave_emb, dim=1)
187
+
188
+ # 插入video features
189
+ f_segs = p_segs[-1].split('<FeatureHere>')
190
+ f_tokens = self.llama_tokenizer(
191
+ f_segs[0], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
192
+ f_embed = self.embed_tokens(f_tokens.input_ids)
193
+ f_wrapped_emb = torch.cat([f_embed, each_video_feature[None][:] ], dim=1)
194
+
195
+ p_tokens = self.llama_tokenizer(
196
+ # p_segs替换为f_segs
197
+ f_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
198
+ p_embed = self.embed_tokens(p_tokens.input_ids)
199
+ wrapped_emb = torch.cat([wrapped_emb, f_wrapped_emb, p_embed], dim=1)
200
+ emb_lists.append(wrapped_emb)
201
+
202
+ emb_lens = [emb.shape[1] for emb in emb_lists]
203
+ pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
204
+
205
+ max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
206
+ wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
207
+ wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
208
+
209
+ for i, emb in enumerate(emb_lists):
210
+ length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
211
+ wrapped_embs[i, :length] = emb[:, :length]
212
+ wrapped_atts[i, :length] = 1
213
+ return wrapped_embs, wrapped_atts
214
+
215
+ def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
216
+ """
217
+ Concatenate the batched input embedding and batched output embedding together.
218
+ Both the input and the output embedding should be right padded.
219
+ """
220
+ input_lens = []
221
+ cat_embs = []
222
+ cat_atts = []
223
+ for i in range(input_embs.size(0)):
224
+ input_len = input_atts[i].sum()
225
+ input_lens.append(input_len)
226
+ cat_embs.append(
227
+ torch.cat([
228
+ input_embs[i][:input_len],
229
+ output_embs[i],
230
+ input_embs[i][input_len:]
231
+ ])
232
+ )
233
+ cat_atts.append(
234
+ torch.cat([
235
+ input_atts[i][:input_len],
236
+ output_atts[i],
237
+ input_atts[i][input_len:]
238
+ ])
239
+ )
240
+ cat_embs = torch.stack(cat_embs)
241
+ cat_atts = torch.stack(cat_atts)
242
+ return cat_embs, cat_atts, input_lens
243
+
244
+ def tokenize_conversation(self, conv_q, conv_a):
245
+ """concatenate conversation and make sure the model is only trained to regress the answer"""
246
+
247
+ to_regress_token_ids_list = []
248
+ targets_list = []
249
+
250
+ batch_size = len(conv_q)
251
+ for batch_idx in range(batch_size):
252
+ questions, answers = conv_q[batch_idx], conv_a[batch_idx]
253
+ questions = [self.llama_tokenizer(self.llama_tokenizer.bos_token + q,
254
+ return_tensors="pt",
255
+ add_special_tokens=False).to(self.device) for q in questions[1:]] # the first question is handled in the prompt wrap function, skip it
256
+ answers = [self.llama_tokenizer(a + self.end_sym,
257
+ return_tensors="pt",
258
+ add_special_tokens=False).to(self.device) for a in answers]
259
+ cur_id = []
260
+ cur_target = []
261
+ for i in range(len(questions)):
262
+ cur_id.append(answers[i].input_ids)
263
+ cur_target.append(answers[i].input_ids)
264
+ cur_id.append(questions[i].input_ids)
265
+ cur_target.append(torch.ones_like(questions[i].input_ids) * -100)
266
+
267
+ cur_id.append(answers[-1].input_ids)
268
+ cur_target.append(answers[-1].input_ids)
269
+
270
+ cur_id = torch.cat(cur_id, dim=1)
271
+ cur_target = torch.cat(cur_target, dim=1)
272
+ to_regress_token_ids_list.append(cur_id)
273
+ targets_list.append(cur_target)
274
+
275
+ max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
276
+ to_regress_token_ids = torch.ones([batch_size, max_len],
277
+ dtype=cur_id.dtype, device=self.device) * self.llama_tokenizer.pad_token_id
278
+ targets = torch.ones([batch_size, max_len],
279
+ dtype=cur_id.dtype, device=self.device) * -100
280
+ for batch_idx in range(batch_size):
281
+ cur_len = to_regress_token_ids_list[batch_idx].shape[1]
282
+ to_regress_token_ids[batch_idx, :cur_len] = to_regress_token_ids_list[batch_idx][0, :max_len]
283
+ targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
284
+
285
+ to_regress_token_attn = (to_regress_token_ids != self.llama_tokenizer.pad_token_id).to(torch.int)
286
+
287
+ return to_regress_token_ids, to_regress_token_attn, targets
288
+
289
+ def preparing_embedding(self, samples):
290
+ ### prepare input tokens
291
+ if 'image' in samples:
292
+ # img_embeds, img_atts = self.encode_img(samples["image"])
293
+ img_embeds, img_atts = self.encode_img(samples["image"], samples["video_features"])
294
+ else:
295
+ img_embeds = img_atts = None
296
+
297
+ if 'conv_q' in samples:
298
+ # handeling conversation datasets
299
+ conv_q, conv_a = samples['conv_q'], samples['conv_a']
300
+
301
+ connect_sym = samples['connect_sym'][0]
302
+ conv_q = [q.split(connect_sym)for q in conv_q]
303
+ conv_a = [a.split(connect_sym) for a in conv_a]
304
+
305
+ conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q]
306
+
307
+ cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q])
308
+ regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a)
309
+
310
+ else:
311
+ if "instruction_input" in samples:
312
+ instruction = samples["instruction_input"]
313
+ elif self.prompt_list:
314
+ instruction = random.choice(self.prompt_list)
315
+ else:
316
+ instruction = None
317
+
318
+ if hasattr(self, 'chat_template') and self.chat_template:
319
+ instruction = [self.prompt_template.format(instruct) for instruct in instruction]
320
+
321
+ if 'length' in samples:
322
+ # the input is a image train (like videos)
323
+ bsz, pn, hs = img_embeds.shape
324
+ img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs)
325
+ cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
326
+ else:
327
+ cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
328
+
329
+ ### prepare target tokens
330
+ self.llama_tokenizer.padding_side = "right"
331
+ text = [t + self.end_sym for t in samples["answer"]]
332
+
333
+ regress_tokens = self.llama_tokenizer(
334
+ text,
335
+ return_tensors="pt",
336
+ padding="longest",
337
+ truncation=True,
338
+ max_length=self.max_txt_len,
339
+ add_special_tokens=False
340
+ ).to(self.device)
341
+
342
+ regress_token_ids = regress_tokens.input_ids
343
+ regress_atts = regress_tokens.attention_mask
344
+ part_targets = regress_token_ids.masked_fill(
345
+ regress_token_ids == self.llama_tokenizer.pad_token_id, -100
346
+ )
347
+
348
+ regress_embeds = self.embed_tokens(regress_token_ids)
349
+
350
+ return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
351
+
352
+ def forward(self, samples, reduction='mean'):
353
+ # import pdb
354
+ # pdb.set_trace()
355
+ # samples['image'].shape -> [1, 3, 448, 448]
356
+
357
+ # prepare the embedding to condition and the embedding to regress
358
+ cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
359
+ self.preparing_embedding(samples)
360
+
361
+ # concat the embedding to condition and the embedding to regress
362
+ inputs_embeds, attention_mask, input_lens = \
363
+ self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
364
+
365
+ # get bos token embedding
366
+ bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
367
+ bos_embeds = self.embed_tokens(bos)
368
+ bos_atts = cond_atts[:, :1]
369
+
370
+ # add bos token at the begining
371
+ inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
372
+ attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
373
+
374
+ # ensemble the final targets
375
+ targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
376
+ dtype=torch.long).to(self.device).fill_(-100)
377
+
378
+ for i, target in enumerate(part_targets):
379
+ targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
380
+
381
+ with self.maybe_autocast():
382
+ outputs = self.llama_model(
383
+ inputs_embeds=inputs_embeds,
384
+ attention_mask=attention_mask,
385
+ return_dict=True,
386
+ labels=targets,
387
+ reduction=reduction,
388
+ output_hidden_states=True,
389
+ emotion = samples['emotion'],
390
+ )
391
+ loss = outputs.loss
392
+
393
+ # import pdb
394
+ # pdb.set_trace()
395
+
396
+ # feature_list = []
397
+ # with self.maybe_autocast():
398
+ # video_features = torch.squeeze(samples['video_features'])
399
+ # video_list = torch.chunk(video_features, chunks=3, dim=0)
400
+
401
+ # feature_list.append(video_features[0].unsqueeze(dim=0).requires_grad_())
402
+ # feature_list.append(video_features[1].unsqueeze(dim=0).requires_grad_())
403
+ # feature_list.append(video_features[2].unsqueeze(dim=0).requires_grad_())
404
+
405
+ # # last
406
+ # feature_list.append(outputs.hidden_states[-1][:, 6, :].requires_grad_())
407
+ # feature_list.append(outputs.hidden_states[-1][:, 7, :].requires_grad_())
408
+ # feature_list.append(outputs.hidden_states[-1][:, 8, :].requires_grad_())
409
+ # feature_list.append(outputs.hidden_states[-1][:, 9, :].requires_grad_())
410
+
411
+ # emos_pred = self.attention(feature_list)
412
+ # emos_loss = self.CEloss(emos_pred, samples['emotion'])
413
+
414
+ emos_loss = loss
415
+ emos_pred = 0
416
+
417
+ return {"loss": loss, "emos_loss": emos_loss, "emos_pred": emos_pred, "emotion": samples['emotion']}
418
+
419
+ def embed_tokens(self, token_ids):
420
+ if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model
421
+ embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
422
+ else:
423
+ embeds = self.llama_model.base_model.embed_tokens(token_ids)
424
+ return embeds
425
+
426
+ @torch.no_grad()
427
+ def generate(
428
+ self,
429
+ images,
430
+ video_features,
431
+ texts,
432
+ num_beams=1,
433
+ max_new_tokens=20,
434
+ min_length=1,
435
+ top_p=0.9,
436
+ repetition_penalty=1,
437
+ length_penalty=1,
438
+ temperature=1,
439
+ do_sample=False,
440
+ stop_words_ids=[2],
441
+ ):
442
+ '''
443
+ function for generate test use
444
+ '''
445
+
446
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
447
+ stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
448
+
449
+ # img_embeds, atts_img = self.encode_img(images.to(self.device))
450
+ img_embeds, atts_img = self.encode_img(images.to(self.device), video_features.to(self.device))
451
+
452
+ image_lists = [[image_emb[None]] for image_emb in img_embeds]
453
+
454
+ batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
455
+
456
+ batch_size = len(batch_embs)
457
+ max_len = max([emb.shape[1] for emb in batch_embs])
458
+ emb_dim = batch_embs[0].shape[2]
459
+ dtype = batch_embs[0].dtype
460
+ device = batch_embs[0].device
461
+
462
+ embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
463
+ attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
464
+ for i, emb in enumerate(batch_embs):
465
+ emb_len = emb.shape[1]
466
+ embs[i, -emb_len:] = emb[0]
467
+ attn_mask[i, -emb_len:] = 1
468
+
469
+ with self.maybe_autocast():
470
+ outputs = self.llama_model.generate(
471
+ inputs_embeds=embs,
472
+ attention_mask=attn_mask,
473
+ max_new_tokens=max_new_tokens,
474
+ num_beams=num_beams,
475
+ length_penalty=length_penalty,
476
+ temperature=temperature,
477
+ do_sample=do_sample,
478
+ min_length=min_length,
479
+ top_p=top_p,
480
+ repetition_penalty=repetition_penalty,
481
+ # stopping_criteria=stopping_criteria,
482
+ )
483
+
484
+ # with self.maybe_autocast():
485
+ # outputs = self.llama_model.generate(
486
+ # inputs_embeds=embs,
487
+ # attention_mask=attn_mask,
488
+ # max_new_tokens=max_new_tokens,
489
+ # num_beams=num_beams,
490
+ # do_sample=do_sample,
491
+ # # stopping_criteria=stopping_criteria,
492
+ # )
493
+ answers = []
494
+ for output_token in outputs:
495
+ if output_token[0] == 0:
496
+ output_token = output_token[1:]
497
+ output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
498
+ output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
499
+ output_texts = output_texts.replace("<s>", "")
500
+ output_texts = output_texts.split(r'[/INST]')[-1].strip()
501
+ answers.append(output_texts)
502
+
503
+ return answers
504
+
505
+ @torch.no_grad()
506
+ def multi_select(self, images, texts, answers, num_cand=None):
507
+ all_losses = []
508
+ for answer in answers:
509
+ choice_samples = {
510
+ 'image': images,
511
+ 'instruction_input': texts,
512
+ 'answer': answer
513
+ }
514
+ loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
515
+ all_losses.append(loss)
516
+ torch.cuda.empty_cache()
517
+ all_losses = torch.cat(all_losses, dim=-1)
518
+ if num_cand is not None:
519
+ for i in range(all_losses.shape[0]):
520
+ all_losses[i, num_cand[i]:] = 9999
521
+ output_class_ranks = torch.argsort(all_losses, dim=-1)
522
+ return output_class_ranks.tolist()
minigpt4/models/minigpt_v2.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import random
3
+
4
+ import torch
5
+ from torch.cuda.amp import autocast as autocast
6
+ import torch.nn as nn
7
+
8
+ from minigpt4.common.registry import registry
9
+ from minigpt4.models.base_model import disabled_train
10
+ from minigpt4.models.minigpt_base import MiniGPTBase
11
+ from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
12
+
13
+
14
+ @registry.register_model("minigpt_v2")
15
+ class MiniGPTv2(MiniGPTBase):
16
+ """
17
+ MiniGPT-v2 model
18
+ """
19
+
20
+ PRETRAINED_MODEL_CONFIG_DICT = {
21
+ "pretrain": "configs/models/minigpt_v2.yaml",
22
+ }
23
+
24
+ def __init__(
25
+ self,
26
+ vit_model="eva_clip_g",
27
+ img_size=448,
28
+ drop_path_rate=0,
29
+ use_grad_checkpoint=False,
30
+ vit_precision="fp16",
31
+ freeze_vit=True,
32
+ llama_model="",
33
+ prompt_template='[INST] {} [/INST]',
34
+ max_txt_len=300,
35
+ end_sym='\n',
36
+ lora_r=64,
37
+ lora_target_modules=["q_proj", "v_proj"],
38
+ lora_alpha=16,
39
+ lora_dropout=0.05,
40
+ chat_template=False,
41
+ use_grad_checkpoint_llm=False,
42
+ max_context_len=3800,
43
+ low_resource=False, # use 8 bit and put vit in cpu
44
+ device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
45
+ ):
46
+ # lora_target_modules = ["q_proj", "v_proj"]
47
+ # lora_r=128
48
+ super().__init__(
49
+ vit_model=vit_model,
50
+ img_size=img_size,
51
+ drop_path_rate=drop_path_rate,
52
+ use_grad_checkpoint=use_grad_checkpoint,
53
+ vit_precision=vit_precision,
54
+ freeze_vit=freeze_vit,
55
+ llama_model=llama_model,
56
+ max_txt_len=max_txt_len,
57
+ max_context_len=max_context_len,
58
+ end_sym=end_sym,
59
+ prompt_template=prompt_template,
60
+ low_resource=low_resource,
61
+ device_8bit=device_8bit,
62
+ lora_r=lora_r,
63
+ lora_target_modules=lora_target_modules,
64
+ lora_alpha=lora_alpha,
65
+ lora_dropout=lora_dropout,
66
+ )
67
+
68
+ img_f_dim = self.visual_encoder.num_features * 4
69
+ self.llama_proj = nn.Linear(
70
+ img_f_dim, self.llama_model.config.hidden_size
71
+ )
72
+
73
+ self.feats_llama_proj1 = nn.Linear(
74
+ 1024, self.llama_model.config.hidden_size
75
+ )
76
+ self.feats_llama_proj2 = nn.Linear(
77
+ 1024, self.llama_model.config.hidden_size
78
+ )
79
+ self.feats_llama_proj3 = nn.Linear(
80
+ 1024, self.llama_model.config.hidden_size
81
+ )
82
+
83
+ self.cls_tk_llama_proj = nn.Linear(
84
+ 1408, self.llama_model.config.hidden_size
85
+ )
86
+
87
+ self.chat_template = chat_template
88
+
89
+ if use_grad_checkpoint_llm:
90
+ self.llama_model.gradient_checkpointing_enable()
91
+
92
+ def encode_img(self, image, video_features):
93
+ # device = 'cuda:0'
94
+ device = image.device
95
+ if len(image.shape) > 4:
96
+ image = image.reshape(-1, *image.shape[-3:])
97
+ with self.maybe_autocast():
98
+ image_feats = self.visual_encoder(image) # [1, 1025, 1408]
99
+ image_embeds = self.ln_vision(image_feats).to(device) # [1, 1025, 1408]
100
+ image_cls_tk = image_embeds[:, :1, :] # [1, 1, 1408]
101
+ cls_tk_feats = self.cls_tk_llama_proj(image_cls_tk) # [1, 1, 4096]
102
+ image_embeds = image_embeds[:, 1:, :] # [1, 1024, 1408]
103
+ bs, pn, hs = image_embeds.shape
104
+ image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4)) # [1, 256, 5632]
105
+ image_inputs_llama = self.llama_proj(image_embeds) # [1, 256, 4096]
106
+ video_features = video_features.to(device) # [1, 3, 1024]
107
+ video_features_split = torch.split(video_features, 1, dim=1)
108
+ output1 = self.feats_llama_proj1(video_features_split[0].squeeze(1))
109
+ output2 = self.feats_llama_proj2(video_features_split[1].squeeze(1))
110
+ output3 = self.feats_llama_proj3(video_features_split[2].squeeze(1))
111
+ video_feats = torch.stack([output1, output2, output3], dim=1)
112
+ inputs_llama = torch.cat((image_inputs_llama, video_feats, cls_tk_feats), dim=1) # cls_tk_feats
113
+ # inputs_llama = torch.cat((image_inputs_llama, video_feats), dim=1)
114
+
115
+ atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
116
+ return inputs_llama, atts_llama
117
+
118
+ @classmethod
119
+ def from_config(cls, cfg):
120
+ vit_model = cfg.get("vit_model", "eva_clip_g")
121
+ img_size = cfg.get("image_size")
122
+ llama_model = cfg.get("llama_model")
123
+
124
+ drop_path_rate = cfg.get("drop_path_rate", 0)
125
+ use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
126
+ vit_precision = cfg.get("vit_precision", "fp16")
127
+ freeze_vit = cfg.get("freeze_vit", True)
128
+ low_resource = cfg.get("low_resource", False)
129
+
130
+ prompt_template = cfg.get("prompt_template", '[INST] {} [/INST]')
131
+ max_txt_len = cfg.get("max_txt_len", 300)
132
+ end_sym = cfg.get("end_sym", '\n')
133
+
134
+ lora_r = cfg.get("lora_r", 64)
135
+ lora_alpha = cfg.get("lora_alpha", 16)
136
+ chat_template = cfg.get("chat_template", False)
137
+
138
+ use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False)
139
+ max_context_len = cfg.get("max_context_len", 3800)
140
+
141
+ model = cls(
142
+ vit_model=vit_model,
143
+ img_size=img_size,
144
+ drop_path_rate=drop_path_rate,
145
+ use_grad_checkpoint=use_grad_checkpoint,
146
+ vit_precision=vit_precision,
147
+ freeze_vit=freeze_vit,
148
+ llama_model=llama_model,
149
+ prompt_template=prompt_template,
150
+ max_txt_len=max_txt_len,
151
+ low_resource=low_resource,
152
+ end_sym=end_sym,
153
+ lora_r=lora_r,
154
+ lora_alpha=lora_alpha,
155
+ chat_template=chat_template,
156
+ use_grad_checkpoint_llm=use_grad_checkpoint_llm,
157
+ max_context_len=max_context_len,
158
+ )
159
+
160
+ ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
161
+ if ckpt_path:
162
+ print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
163
+ ckpt = torch.load(ckpt_path, map_location="cpu")
164
+ msg = model.load_state_dict(ckpt['model'], strict=False)
165
+
166
+ return model
minigpt4/models/modeling_llama.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torch.nn import CrossEntropyLoss
7
+
8
+ from transformers.utils import add_start_docstrings_to_model_forward, replace_return_docstrings
9
+ from transformers.modeling_outputs import CausalLMOutputWithPast
10
+ from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING, _CONFIG_FOR_DOC
11
+ from transformers.models.llama.modeling_llama import LlamaForCausalLM as LlamaForCausalLMOrig
12
+
13
+
14
+ class LlamaForCausalLM(LlamaForCausalLMOrig):
15
+
16
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
17
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
18
+ def forward(
19
+ self,
20
+ input_ids: torch.LongTensor = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ labels: Optional[torch.LongTensor] = None,
26
+ use_cache: Optional[bool] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ emotion: Optional[torch.Tensor] = None,
30
+ return_dict: Optional[bool] = None,
31
+ reduction: Optional[str] = "mean",
32
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ Returns:
41
+
42
+ Example:
43
+
44
+ ```python
45
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
46
+
47
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
48
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
49
+
50
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
51
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
52
+
53
+ >>> # Generate
54
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
55
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
56
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
57
+ ```"""
58
+
59
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
60
+ output_hidden_states = (
61
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
62
+ )
63
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
64
+
65
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
66
+ outputs = self.model(
67
+ input_ids=input_ids,
68
+ attention_mask=attention_mask,
69
+ position_ids=position_ids,
70
+ past_key_values=past_key_values,
71
+ inputs_embeds=inputs_embeds,
72
+ use_cache=use_cache,
73
+ output_attentions=output_attentions,
74
+ output_hidden_states=output_hidden_states,
75
+ return_dict=return_dict,
76
+ )
77
+
78
+ hidden_states = outputs[0]
79
+ if hasattr(self.config, 'pretraining_tp') and self.config.pretraining_tp > 1:
80
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
81
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
82
+ logits = torch.cat(logits, dim=-1)
83
+ else:
84
+ logits = self.lm_head(hidden_states)
85
+ logits = logits.float()
86
+
87
+ loss = None
88
+ if labels is not None:
89
+
90
+ # Shift so that tokens < n predict n
91
+ shift_logits = logits[..., :-1, :].contiguous()
92
+ shift_labels = labels[..., 1:].contiguous()
93
+ # Flatten the tokens
94
+ loss_fct = CrossEntropyLoss(reduction=reduction)
95
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
96
+ shift_labels = shift_labels.view(-1)
97
+
98
+ # Enable model parallelism
99
+ shift_labels = shift_labels.to(shift_logits.device)
100
+ loss = loss_fct(shift_logits, shift_labels)
101
+ if reduction == "none":
102
+ loss = loss.view(logits.size(0), -1).mean(1)
103
+
104
+
105
+
106
+ if not return_dict:
107
+ output = (logits,) + outputs[1:]
108
+ return (loss,) + output if loss is not None else output
109
+
110
+ return CausalLMOutputWithPast(
111
+ loss=loss,
112
+ logits=logits,
113
+ past_key_values=outputs.past_key_values,
114
+ hidden_states=outputs.hidden_states,
115
+ attentions=outputs.attentions,
116
+ )
minigpt4/processors/__init__.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ from minigpt4.processors.base_processor import BaseProcessor
9
+ from minigpt4.processors.blip_processors import (
10
+ Blip2ImageTrainProcessor,
11
+ Blip2ImageEvalProcessor,
12
+ BlipCaptionProcessor,
13
+ )
14
+
15
+ from minigpt4.common.registry import registry
16
+
17
+ __all__ = [
18
+ "BaseProcessor",
19
+ "Blip2ImageTrainProcessor",
20
+ "Blip2ImageEvalProcessor",
21
+ "BlipCaptionProcessor",
22
+ ]
23
+
24
+
25
+ def load_processor(name, cfg=None):
26
+ """
27
+ Example
28
+
29
+ >>> processor = load_processor("alpro_video_train", cfg=None)
30
+ """
31
+ processor = registry.get_processor_class(name).from_config(cfg)
32
+
33
+ return processor
minigpt4/processors/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (982 Bytes). View file
 
minigpt4/processors/__pycache__/base_processor.cpython-39.pyc ADDED
Binary file (1.33 kB). View file
 
minigpt4/processors/__pycache__/blip_processors.cpython-39.pyc ADDED
Binary file (4.32 kB). View file
 
minigpt4/processors/__pycache__/randaugment.cpython-39.pyc ADDED
Binary file (12.2 kB). View file
 
minigpt4/processors/base_processor.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ from omegaconf import OmegaConf
9
+
10
+
11
+ class BaseProcessor:
12
+ def __init__(self):
13
+ self.transform = lambda x: x
14
+ return
15
+
16
+ def __call__(self, item):
17
+ return self.transform(item)
18
+
19
+ @classmethod
20
+ def from_config(cls, cfg=None):
21
+ return cls()
22
+
23
+ def build(self, **kwargs):
24
+ cfg = OmegaConf.create(kwargs)
25
+
26
+ return self.from_config(cfg)
minigpt4/processors/blip_processors.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import re
9
+
10
+ from minigpt4.common.registry import registry
11
+ from minigpt4.processors.base_processor import BaseProcessor
12
+ from minigpt4.processors.randaugment import RandomAugment
13
+ from omegaconf import OmegaConf
14
+ from torchvision import transforms
15
+ from torchvision.transforms.functional import InterpolationMode
16
+
17
+
18
+ class BlipImageBaseProcessor(BaseProcessor):
19
+ def __init__(self, mean=None, std=None):
20
+ if mean is None:
21
+ mean = (0.48145466, 0.4578275, 0.40821073)
22
+ if std is None:
23
+ std = (0.26862954, 0.26130258, 0.27577711)
24
+
25
+ self.normalize = transforms.Normalize(mean, std)
26
+
27
+
28
+ @registry.register_processor("blip_caption")
29
+ class BlipCaptionProcessor(BaseProcessor):
30
+ def __init__(self, prompt="", max_words=200):
31
+ self.prompt = prompt
32
+ self.max_words = max_words
33
+
34
+ def __call__(self, caption):
35
+ caption = self.prompt + self.pre_caption(caption)
36
+
37
+ return caption
38
+
39
+ @classmethod
40
+ def from_config(cls, cfg=None):
41
+ if cfg is None:
42
+ cfg = OmegaConf.create()
43
+
44
+ prompt = cfg.get("prompt", "")
45
+ max_words = cfg.get("max_words", 200)
46
+
47
+ return cls(prompt=prompt, max_words=max_words)
48
+
49
+ def pre_caption(self, caption):
50
+ caption = re.sub(
51
+ r"([.!\"()*#:;~])",
52
+ " ",
53
+ caption.lower(),
54
+ )
55
+ caption = re.sub(
56
+ r"\s{2,}",
57
+ " ",
58
+ caption,
59
+ )
60
+ caption = caption.rstrip("\n")
61
+ caption = caption.strip(" ")
62
+
63
+ # truncate caption
64
+ caption_words = caption.split(" ")
65
+ if len(caption_words) > self.max_words:
66
+ caption = " ".join(caption_words[: self.max_words])
67
+
68
+ return caption
69
+
70
+
71
+ @registry.register_processor("blip2_image_train")
72
+ class Blip2ImageTrainProcessor(BlipImageBaseProcessor):
73
+ def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0):
74
+ super().__init__(mean=mean, std=std)
75
+
76
+ self.transform = transforms.Compose(
77
+ [
78
+ transforms.Resize(
79
+ (image_size,image_size),
80
+ interpolation=InterpolationMode.BICUBIC,
81
+ ),
82
+ transforms.ToTensor(),
83
+ self.normalize,
84
+ ]
85
+ )
86
+
87
+ def __call__(self, item):
88
+ return self.transform(item)
89
+
90
+ @classmethod
91
+ def from_config(cls, cfg=None):
92
+ if cfg is None:
93
+ cfg = OmegaConf.create()
94
+
95
+ image_size = cfg.get("image_size", 224)
96
+
97
+ mean = cfg.get("mean", None)
98
+ std = cfg.get("std", None)
99
+
100
+ min_scale = cfg.get("min_scale", 0.5)
101
+ max_scale = cfg.get("max_scale", 1.0)
102
+
103
+ return cls(
104
+ image_size=image_size,
105
+ mean=mean,
106
+ std=std,
107
+ min_scale=min_scale,
108
+ max_scale=max_scale,
109
+ )
110
+
111
+
112
+ @registry.register_processor("blip2_image_eval")
113
+ class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
114
+ def __init__(self, image_size=224, mean=None, std=None):
115
+ super().__init__(mean=mean, std=std)
116
+
117
+ self.transform = transforms.Compose(
118
+ [
119
+ transforms.Resize(
120
+ (image_size, image_size), interpolation=InterpolationMode.BICUBIC
121
+ ),
122
+ transforms.ToTensor(),
123
+ self.normalize,
124
+ ]
125
+ )
126
+
127
+ def __call__(self, item):
128
+ return self.transform(item)
129
+
130
+ @classmethod
131
+ def from_config(cls, cfg=None):
132
+ if cfg is None:
133
+ cfg = OmegaConf.create()
134
+
135
+ image_size = cfg.get("image_size", 224)
136
+
137
+ mean = cfg.get("mean", None)
138
+ std = cfg.get("std", None)
139
+
140
+ return cls(image_size=image_size, mean=mean, std=std)
minigpt4/processors/randaugment.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import cv2
9
+ import numpy as np
10
+
11
+ import torch
12
+
13
+
14
+ ## aug functions
15
+ def identity_func(img):
16
+ return img
17
+
18
+
19
+ def autocontrast_func(img, cutoff=0):
20
+ """
21
+ same output as PIL.ImageOps.autocontrast
22
+ """
23
+ n_bins = 256
24
+
25
+ def tune_channel(ch):
26
+ n = ch.size
27
+ cut = cutoff * n // 100
28
+ if cut == 0:
29
+ high, low = ch.max(), ch.min()
30
+ else:
31
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
32
+ low = np.argwhere(np.cumsum(hist) > cut)
33
+ low = 0 if low.shape[0] == 0 else low[0]
34
+ high = np.argwhere(np.cumsum(hist[::-1]) > cut)
35
+ high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
36
+ if high <= low:
37
+ table = np.arange(n_bins)
38
+ else:
39
+ scale = (n_bins - 1) / (high - low)
40
+ offset = -low * scale
41
+ table = np.arange(n_bins) * scale + offset
42
+ table[table < 0] = 0
43
+ table[table > n_bins - 1] = n_bins - 1
44
+ table = table.clip(0, 255).astype(np.uint8)
45
+ return table[ch]
46
+
47
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
48
+ out = cv2.merge(channels)
49
+ return out
50
+
51
+
52
+ def equalize_func(img):
53
+ """
54
+ same output as PIL.ImageOps.equalize
55
+ PIL's implementation is different from cv2.equalize
56
+ """
57
+ n_bins = 256
58
+
59
+ def tune_channel(ch):
60
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
61
+ non_zero_hist = hist[hist != 0].reshape(-1)
62
+ step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
63
+ if step == 0:
64
+ return ch
65
+ n = np.empty_like(hist)
66
+ n[0] = step // 2
67
+ n[1:] = hist[:-1]
68
+ table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
69
+ return table[ch]
70
+
71
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
72
+ out = cv2.merge(channels)
73
+ return out
74
+
75
+
76
+ def rotate_func(img, degree, fill=(0, 0, 0)):
77
+ """
78
+ like PIL, rotate by degree, not radians
79
+ """
80
+ H, W = img.shape[0], img.shape[1]
81
+ center = W / 2, H / 2
82
+ M = cv2.getRotationMatrix2D(center, degree, 1)
83
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
84
+ return out
85
+
86
+
87
+ def solarize_func(img, thresh=128):
88
+ """
89
+ same output as PIL.ImageOps.posterize
90
+ """
91
+ table = np.array([el if el < thresh else 255 - el for el in range(256)])
92
+ table = table.clip(0, 255).astype(np.uint8)
93
+ out = table[img]
94
+ return out
95
+
96
+
97
+ def color_func(img, factor):
98
+ """
99
+ same output as PIL.ImageEnhance.Color
100
+ """
101
+ ## implementation according to PIL definition, quite slow
102
+ # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
103
+ # out = blend(degenerate, img, factor)
104
+ # M = (
105
+ # np.eye(3) * factor
106
+ # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
107
+ # )[np.newaxis, np.newaxis, :]
108
+ M = np.float32(
109
+ [[0.886, -0.114, -0.114], [-0.587, 0.413, -0.587], [-0.299, -0.299, 0.701]]
110
+ ) * factor + np.float32([[0.114], [0.587], [0.299]])
111
+ out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
112
+ return out
113
+
114
+
115
+ def contrast_func(img, factor):
116
+ """
117
+ same output as PIL.ImageEnhance.Contrast
118
+ """
119
+ mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
120
+ table = (
121
+ np.array([(el - mean) * factor + mean for el in range(256)])
122
+ .clip(0, 255)
123
+ .astype(np.uint8)
124
+ )
125
+ out = table[img]
126
+ return out
127
+
128
+
129
+ def brightness_func(img, factor):
130
+ """
131
+ same output as PIL.ImageEnhance.Contrast
132
+ """
133
+ table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
134
+ out = table[img]
135
+ return out
136
+
137
+
138
+ def sharpness_func(img, factor):
139
+ """
140
+ The differences the this result and PIL are all on the 4 boundaries, the center
141
+ areas are same
142
+ """
143
+ kernel = np.ones((3, 3), dtype=np.float32)
144
+ kernel[1][1] = 5
145
+ kernel /= 13
146
+ degenerate = cv2.filter2D(img, -1, kernel)
147
+ if factor == 0.0:
148
+ out = degenerate
149
+ elif factor == 1.0:
150
+ out = img
151
+ else:
152
+ out = img.astype(np.float32)
153
+ degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
154
+ out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
155
+ out = out.astype(np.uint8)
156
+ return out
157
+
158
+
159
+ def shear_x_func(img, factor, fill=(0, 0, 0)):
160
+ H, W = img.shape[0], img.shape[1]
161
+ M = np.float32([[1, factor, 0], [0, 1, 0]])
162
+ out = cv2.warpAffine(
163
+ img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
164
+ ).astype(np.uint8)
165
+ return out
166
+
167
+
168
+ def translate_x_func(img, offset, fill=(0, 0, 0)):
169
+ """
170
+ same output as PIL.Image.transform
171
+ """
172
+ H, W = img.shape[0], img.shape[1]
173
+ M = np.float32([[1, 0, -offset], [0, 1, 0]])
174
+ out = cv2.warpAffine(
175
+ img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
176
+ ).astype(np.uint8)
177
+ return out
178
+
179
+
180
+ def translate_y_func(img, offset, fill=(0, 0, 0)):
181
+ """
182
+ same output as PIL.Image.transform
183
+ """
184
+ H, W = img.shape[0], img.shape[1]
185
+ M = np.float32([[1, 0, 0], [0, 1, -offset]])
186
+ out = cv2.warpAffine(
187
+ img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
188
+ ).astype(np.uint8)
189
+ return out
190
+
191
+
192
+ def posterize_func(img, bits):
193
+ """
194
+ same output as PIL.ImageOps.posterize
195
+ """
196
+ out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
197
+ return out
198
+
199
+
200
+ def shear_y_func(img, factor, fill=(0, 0, 0)):
201
+ H, W = img.shape[0], img.shape[1]
202
+ M = np.float32([[1, 0, 0], [factor, 1, 0]])
203
+ out = cv2.warpAffine(
204
+ img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
205
+ ).astype(np.uint8)
206
+ return out
207
+
208
+
209
+ def cutout_func(img, pad_size, replace=(0, 0, 0)):
210
+ replace = np.array(replace, dtype=np.uint8)
211
+ H, W = img.shape[0], img.shape[1]
212
+ rh, rw = np.random.random(2)
213
+ pad_size = pad_size // 2
214
+ ch, cw = int(rh * H), int(rw * W)
215
+ x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
216
+ y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
217
+ out = img.copy()
218
+ out[x1:x2, y1:y2, :] = replace
219
+ return out
220
+
221
+
222
+ ### level to args
223
+ def enhance_level_to_args(MAX_LEVEL):
224
+ def level_to_args(level):
225
+ return ((level / MAX_LEVEL) * 1.8 + 0.1,)
226
+
227
+ return level_to_args
228
+
229
+
230
+ def shear_level_to_args(MAX_LEVEL, replace_value):
231
+ def level_to_args(level):
232
+ level = (level / MAX_LEVEL) * 0.3
233
+ if np.random.random() > 0.5:
234
+ level = -level
235
+ return (level, replace_value)
236
+
237
+ return level_to_args
238
+
239
+
240
+ def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
241
+ def level_to_args(level):
242
+ level = (level / MAX_LEVEL) * float(translate_const)
243
+ if np.random.random() > 0.5:
244
+ level = -level
245
+ return (level, replace_value)
246
+
247
+ return level_to_args
248
+
249
+
250
+ def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
251
+ def level_to_args(level):
252
+ level = int((level / MAX_LEVEL) * cutout_const)
253
+ return (level, replace_value)
254
+
255
+ return level_to_args
256
+
257
+
258
+ def solarize_level_to_args(MAX_LEVEL):
259
+ def level_to_args(level):
260
+ level = int((level / MAX_LEVEL) * 256)
261
+ return (level,)
262
+
263
+ return level_to_args
264
+
265
+
266
+ def none_level_to_args(level):
267
+ return ()
268
+
269
+
270
+ def posterize_level_to_args(MAX_LEVEL):
271
+ def level_to_args(level):
272
+ level = int((level / MAX_LEVEL) * 4)
273
+ return (level,)
274
+
275
+ return level_to_args
276
+
277
+
278
+ def rotate_level_to_args(MAX_LEVEL, replace_value):
279
+ def level_to_args(level):
280
+ level = (level / MAX_LEVEL) * 30
281
+ if np.random.random() < 0.5:
282
+ level = -level
283
+ return (level, replace_value)
284
+
285
+ return level_to_args
286
+
287
+
288
+ func_dict = {
289
+ "Identity": identity_func,
290
+ "AutoContrast": autocontrast_func,
291
+ "Equalize": equalize_func,
292
+ "Rotate": rotate_func,
293
+ "Solarize": solarize_func,
294
+ "Color": color_func,
295
+ "Contrast": contrast_func,
296
+ "Brightness": brightness_func,
297
+ "Sharpness": sharpness_func,
298
+ "ShearX": shear_x_func,
299
+ "TranslateX": translate_x_func,
300
+ "TranslateY": translate_y_func,
301
+ "Posterize": posterize_func,
302
+ "ShearY": shear_y_func,
303
+ }
304
+
305
+ translate_const = 10
306
+ MAX_LEVEL = 10
307
+ replace_value = (128, 128, 128)
308
+ arg_dict = {
309
+ "Identity": none_level_to_args,
310
+ "AutoContrast": none_level_to_args,
311
+ "Equalize": none_level_to_args,
312
+ "Rotate": rotate_level_to_args(MAX_LEVEL, replace_value),
313
+ "Solarize": solarize_level_to_args(MAX_LEVEL),
314
+ "Color": enhance_level_to_args(MAX_LEVEL),
315
+ "Contrast": enhance_level_to_args(MAX_LEVEL),
316
+ "Brightness": enhance_level_to_args(MAX_LEVEL),
317
+ "Sharpness": enhance_level_to_args(MAX_LEVEL),
318
+ "ShearX": shear_level_to_args(MAX_LEVEL, replace_value),
319
+ "TranslateX": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
320
+ "TranslateY": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
321
+ "Posterize": posterize_level_to_args(MAX_LEVEL),
322
+ "ShearY": shear_level_to_args(MAX_LEVEL, replace_value),
323
+ }
324
+
325
+
326
+ class RandomAugment(object):
327
+ def __init__(self, N=2, M=10, isPIL=False, augs=[]):
328
+ self.N = N
329
+ self.M = M
330
+ self.isPIL = isPIL
331
+ if augs:
332
+ self.augs = augs
333
+ else:
334
+ self.augs = list(arg_dict.keys())
335
+
336
+ def get_random_ops(self):
337
+ sampled_ops = np.random.choice(self.augs, self.N)
338
+ return [(op, 0.5, self.M) for op in sampled_ops]
339
+
340
+ def __call__(self, img):
341
+ if self.isPIL:
342
+ img = np.array(img)
343
+ ops = self.get_random_ops()
344
+ for name, prob, level in ops:
345
+ if np.random.random() > prob:
346
+ continue
347
+ args = arg_dict[name](level)
348
+ img = func_dict[name](img, *args)
349
+ return img
350
+
351
+
352
+ class VideoRandomAugment(object):
353
+ def __init__(self, N=2, M=10, p=0.0, tensor_in_tensor_out=True, augs=[]):
354
+ self.N = N
355
+ self.M = M
356
+ self.p = p
357
+ self.tensor_in_tensor_out = tensor_in_tensor_out
358
+ if augs:
359
+ self.augs = augs
360
+ else:
361
+ self.augs = list(arg_dict.keys())
362
+
363
+ def get_random_ops(self):
364
+ sampled_ops = np.random.choice(self.augs, self.N, replace=False)
365
+ return [(op, self.M) for op in sampled_ops]
366
+
367
+ def __call__(self, frames):
368
+ assert (
369
+ frames.shape[-1] == 3
370
+ ), "Expecting last dimension for 3-channels RGB (b, h, w, c)."
371
+
372
+ if self.tensor_in_tensor_out:
373
+ frames = frames.numpy().astype(np.uint8)
374
+
375
+ num_frames = frames.shape[0]
376
+
377
+ ops = num_frames * [self.get_random_ops()]
378
+ apply_or_not = num_frames * [np.random.random(size=self.N) > self.p]
379
+
380
+ frames = torch.stack(
381
+ list(map(self._aug, frames, ops, apply_or_not)), dim=0
382
+ ).float()
383
+
384
+ return frames
385
+
386
+ def _aug(self, img, ops, apply_or_not):
387
+ for i, (name, level) in enumerate(ops):
388
+ if not apply_or_not[i]:
389
+ continue
390
+ args = arg_dict[name](level)
391
+ img = func_dict[name](img, *args)
392
+ return torch.from_numpy(img)
393
+
394
+
395
+ if __name__ == "__main__":
396
+ a = RandomAugment()
397
+ img = np.random.randn(32, 32, 3)
398
+ a(img)