Spaces:
Running
Running
import argparse | |
import os | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==3.47.1") | |
import random | |
from collections import defaultdict | |
import cv2 | |
import re | |
import numpy as np | |
from PIL import Image | |
import torch | |
import html | |
import gradio as gr | |
import torchvision.transforms as T | |
import torch.backends.cudnn as cudnn | |
from minigpt4.common.config import Config | |
from minigpt4.common.registry import registry | |
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat | |
# imports modules for registration | |
from minigpt4.datasets.builders import * | |
from minigpt4.models import * | |
from minigpt4.processors import * | |
from minigpt4.runners import * | |
from minigpt4.tasks import * | |
import socket | |
import os | |
def find_free_port(start_port, end_port): | |
for port in range(start_port, end_port + 1): | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: | |
if sock.connect_ex(('localhost', port)) != 0: # Port is not open | |
return port | |
raise OSError(f"Cannot find empty port in range: {start_port}-{end_port}") | |
def set_gradio_server_port(): | |
start_port = 7870 | |
end_port = 9999 | |
free_port = find_free_port(start_port, end_port) | |
os.environ["GRADIO_SERVER_PORT"] = str(free_port) | |
print(f"Set GRADIO_SERVER_PORT to {free_port}") | |
# Set GRADIO_SERVER_PORT | |
set_gradio_server_port() | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", default='eval_configs/demo.yaml', | |
help="path to configuration file.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
random.seed(42) | |
np.random.seed(42) | |
torch.manual_seed(42) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
print('Initializing Chat') | |
args = parse_args() | |
cfg = Config(args) | |
device = 'cuda' | |
model_config = cfg.model_cfg | |
print("model_config:", model_config) | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to(device) | |
bounding_box_size = 100 | |
vis_processor_cfg = cfg.datasets_cfg.feature_face_caption.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
model = model.eval() | |
CONV_VISION = Conversation( | |
system="", | |
roles=(r"<s>[INST] ", r" [/INST]"), | |
messages=[], | |
offset=2, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="", | |
) | |
def extract_substrings(string): | |
# first check if there is no-finished bracket | |
index = string.rfind('}') | |
if index != -1: | |
string = string[:index + 1] | |
pattern = r'<p>(.*?)\}(?!<)' | |
matches = re.findall(pattern, string) | |
substrings = [match for match in matches] | |
return substrings | |
def is_overlapping(rect1, rect2): | |
x1, y1, x2, y2 = rect1 | |
x3, y3, x4, y4 = rect2 | |
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) | |
def computeIoU(bbox1, bbox2): | |
x1, y1, x2, y2 = bbox1 | |
x3, y3, x4, y4 = bbox2 | |
intersection_x1 = max(x1, x3) | |
intersection_y1 = max(y1, y3) | |
intersection_x2 = min(x2, x4) | |
intersection_y2 = min(y2, y4) | |
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1) | |
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1) | |
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1) | |
union_area = bbox1_area + bbox2_area - intersection_area | |
iou = intersection_area / union_area | |
return iou | |
def save_tmp_img(visual_img): | |
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg" | |
file_path = "/tmp/gradio" + file_name | |
visual_img.save(file_path) | |
return file_path | |
def mask2bbox(mask): | |
if mask is None: | |
return '' | |
mask = mask.resize([100, 100], resample=Image.NEAREST) | |
mask = np.array(mask)[:, :, 0] | |
rows = np.any(mask, axis=1) | |
cols = np.any(mask, axis=0) | |
if rows.sum(): | |
# Get the top, bottom, left, and right boundaries | |
rmin, rmax = np.where(rows)[0][[0, -1]] | |
cmin, cmax = np.where(cols)[0][[0, -1]] | |
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax) | |
else: | |
bbox = '' | |
return bbox | |
def escape_markdown(text): | |
# List of Markdown special characters that need to be escaped | |
md_chars = ['<', '>'] | |
# Escape each special character | |
for char in md_chars: | |
text = text.replace(char, '\\' + char) | |
return text | |
def reverse_escape(text): | |
md_chars = ['\\<', '\\>'] | |
for char in md_chars: | |
text = text.replace(char, char[1:]) | |
return text | |
colors = [ | |
(255, 0, 0), | |
(0, 255, 0), | |
(0, 0, 255), | |
(210, 210, 0), | |
(255, 0, 255), | |
(0, 255, 255), | |
(114, 128, 250), | |
(0, 165, 255), | |
(0, 128, 0), | |
(144, 238, 144), | |
(238, 238, 175), | |
(255, 191, 0), | |
(0, 128, 0), | |
(226, 43, 138), | |
(255, 0, 255), | |
(0, 215, 255), | |
] | |
color_map = { | |
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for | |
color_id, color in enumerate(colors) | |
} | |
used_colors = colors | |
def get_first_frame(video_path): | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print("Error: Cannot open video.") | |
return None | |
ret, frame = cap.read() | |
cap.release() | |
if ret: | |
return frame | |
else: | |
print("Error: Cannot read frame from video.") | |
return None | |
def visualize_all_bbox_together(image, generation): | |
if image is None: | |
return None, '' | |
if isinstance(image, str): # is a image path | |
raw_image = get_first_frame(image) | |
frame_rgb = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) | |
image = Image.fromarray(frame_rgb) | |
generation = html.unescape(generation) | |
image_width, image_height = image.size | |
image = image.resize([500, int(500 / image_width * image_height)]) | |
image_width, image_height = image.size | |
string_list = extract_substrings(generation) | |
if string_list: # it is grounding or detection | |
mode = 'all' | |
entities = defaultdict(list) | |
i = 0 | |
j = 0 | |
for string in string_list: | |
try: | |
obj, string = string.split('</p>') | |
except ValueError: | |
print('wrong string: ', string) | |
continue | |
bbox_list = string.split('<delim>') | |
flag = False | |
for bbox_string in bbox_list: | |
integers = re.findall(r'-?\d+', bbox_string) | |
if len(integers) == 4: | |
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) | |
left = x0 / bounding_box_size * image_width | |
bottom = y0 / bounding_box_size * image_height | |
right = x1 / bounding_box_size * image_width | |
top = y1 / bounding_box_size * image_height | |
entities[obj].append([left, bottom, right, top]) | |
j += 1 | |
flag = True | |
if flag: | |
i += 1 | |
else: | |
integers = re.findall(r'-?\d+', generation) | |
if len(integers) == 4: # it is refer | |
mode = 'single' | |
entities = list() | |
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) | |
left = x0 / bounding_box_size * image_width | |
bottom = y0 / bounding_box_size * image_height | |
right = x1 / bounding_box_size * image_width | |
top = y1 / bounding_box_size * image_height | |
entities.append([left, bottom, right, top]) | |
else: | |
# don't detect any valid bbox to visualize | |
return None, '' | |
if len(entities) == 0: | |
return None, '' | |
if isinstance(image, Image.Image): | |
image_h = image.height | |
image_w = image.width | |
image = np.array(image) | |
elif isinstance(image, str): | |
if os.path.exists(image): | |
pil_img = Image.open(image).convert("RGB") | |
image = np.array(pil_img)[:, :, [2, 1, 0]] | |
image_h = pil_img.height | |
image_w = pil_img.width | |
else: | |
raise ValueError(f"invaild image path, {image}") | |
elif isinstance(image, torch.Tensor): | |
image_tensor = image.cpu() | |
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] | |
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] | |
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean | |
pil_img = T.ToPILImage()(image_tensor) | |
image_h = pil_img.height | |
image_w = pil_img.width | |
image = np.array(pil_img)[:, :, [2, 1, 0]] | |
else: | |
raise ValueError(f"invaild image format, {type(image)} for {image}") | |
indices = list(range(len(entities))) | |
new_image = image.copy() | |
previous_bboxes = [] | |
# size of text | |
text_size = 0.5 | |
# thickness of text | |
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) | |
box_line = 2 | |
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) | |
base_height = int(text_height * 0.675) | |
text_offset_original = text_height - base_height | |
text_spaces = 2 | |
# num_bboxes = sum(len(x[-1]) for x in entities) | |
used_colors = colors # random.sample(colors, k=num_bboxes) | |
color_id = -1 | |
for entity_idx, entity_name in enumerate(entities): | |
if mode == 'single' or mode == 'identify': | |
bboxes = entity_name | |
bboxes = [bboxes] | |
else: | |
bboxes = entities[entity_name] | |
color_id += 1 | |
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): | |
skip_flag = False | |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm) | |
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist()) | |
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) | |
if mode == 'all': | |
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 | |
x1 = orig_x1 - l_o | |
y1 = orig_y1 - l_o | |
if y1 < text_height + text_offset_original + 2 * text_spaces: | |
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces | |
x1 = orig_x1 + r_o | |
# add text background | |
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, | |
text_line) | |
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - ( | |
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 | |
for prev_bbox in previous_bboxes: | |
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \ | |
prev_bbox['phrase'] == entity_name: | |
skip_flag = True | |
break | |
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']): | |
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) | |
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) | |
y1 += (text_height + text_offset_original + 2 * text_spaces) | |
if text_bg_y2 >= image_h: | |
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) | |
text_bg_y2 = image_h | |
y1 = image_h | |
break | |
if not skip_flag: | |
alpha = 0.5 | |
for i in range(text_bg_y1, text_bg_y2): | |
for j in range(text_bg_x1, text_bg_x2): | |
if i < image_h and j < image_w: | |
if j < text_bg_x1 + 1.35 * c_width: | |
# original color | |
bg_color = color | |
else: | |
# white | |
bg_color = [255, 255, 255] | |
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype( | |
np.uint8) | |
cv2.putText( | |
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), | |
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA | |
) | |
previous_bboxes.append( | |
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name}) | |
if mode == 'all': | |
def color_iterator(colors): | |
while True: | |
for color in colors: | |
yield color | |
color_gen = color_iterator(colors) | |
# Add colors to phrases and remove <p></p> | |
def colored_phrases(match): | |
phrase = match.group(1) | |
color = next(color_gen) | |
return f'<span style="color:rgb{color}">{phrase}</span>' | |
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation) | |
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation) | |
else: | |
generation_colored = '' | |
pil_image = Image.fromarray(new_image) | |
return pil_image, generation_colored | |
def gradio_reset(chat_state, img_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat', | |
interactive=True), chat_state, img_list | |
def image_upload_trigger(upload_flag, replace_flag, img_list): | |
# set the upload flag to true when receive a new image. | |
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later. | |
upload_flag = 1 | |
if img_list: | |
replace_flag = 1 | |
return upload_flag, replace_flag | |
def example_trigger(text_input, image, upload_flag, replace_flag, img_list): | |
# set the upload flag to true when receive a new image. | |
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later. | |
upload_flag = 1 | |
if img_list or replace_flag == 1: | |
replace_flag = 1 | |
return upload_flag, replace_flag | |
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag): | |
print("+++gradio_ask+++") | |
if len(user_message) == 0: | |
text_box_show = 'Input should not be empty!' | |
else: | |
text_box_show = '' | |
print('user_message:', user_message) | |
print('chatbot:', chatbot) | |
print('chat_state:', chat_state) | |
if isinstance(gr_img, dict): | |
gr_img, mask = gr_img['image'], gr_img['mask'] | |
else: | |
mask = None | |
if '[identify]' in user_message: | |
# check if user provide bbox in the text input | |
integers = re.findall(r'-?\d+', user_message) | |
if len(integers) != 4: # no bbox in text | |
bbox = mask2bbox(mask) | |
user_message = user_message + bbox | |
if chat_state is None: | |
chat_state = CONV_VISION.copy() | |
if upload_flag: | |
if replace_flag: | |
chat_state = CONV_VISION.copy() # new image, reset everything | |
replace_flag = 0 | |
chatbot = [] | |
img_list = [] | |
llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
upload_flag = 0 | |
chat.ask(user_message, chat_state) | |
print('user_message: ', user_message) | |
print('chat_state: ', chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
if '[identify]' in user_message: | |
visual_img, _ = visualize_all_bbox_together(gr_img, user_message) | |
if visual_img is not None: | |
file_path = save_tmp_img(visual_img) | |
chatbot = chatbot + [[(file_path,), None]] | |
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag | |
def gradio_answer(chatbot, chat_state, img_list, temperature): | |
print("--gradio_answer--") | |
# print('img_list: ', img_list) | |
llm_message = chat.answer(conv=chat_state, | |
img_list=img_list, | |
temperature=temperature, | |
max_new_tokens=500, | |
max_length=2000)[0] | |
chatbot[-1][1] = llm_message | |
print('gradio_answer: ', llm_message) | |
return chatbot, chat_state | |
def process_english_text(text): | |
if len(text) < 2: | |
return text | |
text = text[0].upper() + text[1:] | |
sentences = text.split('. ') | |
corrected_sentences = [s.capitalize() for s in sentences] | |
text = '. '.join(corrected_sentences) | |
if text.endswith(','): | |
text = text[:-1] | |
if not text.endswith('.'): | |
text += '.' | |
return text | |
def gradio_stream_answer(chatbot, chat_state, img_list, temperature): | |
print('---gradio_stream_answer---') | |
if len(img_list) > 0: | |
if not isinstance(img_list[0], torch.Tensor): | |
chat.encode_img(img_list) | |
print(chat) | |
streamer = chat.stream_answer(conv=chat_state, | |
img_list=img_list, | |
temperature=temperature, | |
max_new_tokens=500, | |
max_length=2000) | |
output = '' | |
print('streamer:', streamer) | |
for new_output in streamer: | |
escapped = escape_markdown(new_output) | |
output += escapped | |
chatbot[-1][1] = output | |
chatbot[-1][1] = process_english_text(chatbot[-1][1]) | |
yield chatbot, chat_state | |
chat_state.messages[-1][1] = '</s>' | |
print('output:', output) | |
return chatbot, chat_state | |
def gradio_visualize(chatbot, gr_img): | |
if isinstance(gr_img, dict): | |
gr_img, mask = gr_img['image'], gr_img['mask'] | |
unescaped = reverse_escape(chatbot[-1][1]) | |
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped) | |
if visual_img is not None: | |
if len(generation_color): | |
chatbot[-1][1] = generation_color | |
file_path = save_tmp_img(visual_img) | |
chatbot = chatbot + [[None, (file_path,)]] | |
return chatbot | |
def gradio_taskselect(idx): | |
prompt_list = [ | |
'', | |
'[reason] ', | |
'[emotion] ', | |
'[visual] ', | |
'[audio] ' | |
] | |
instruct_list = [ | |
'**Hint:** Type in whatever you want', | |
'**Hint:** Send the command to multimodal emotion reasoning', | |
'**Hint:** Send the command to multimodal emotion recognition', | |
'**Hint:** Send the command to generate visual description', | |
'**Hint:** Send the command to generate audio description' | |
] | |
return prompt_list[idx], instruct_list[idx] | |
chat = Chat(model, vis_processor, device=device) | |
title = """<h1 align="center">Emotion-LLaMA Demo</h1>""" | |
description = 'Welcome to Our Emotion-LLaMA Chatbot Demo!' | |
article = """<p><a href='https://anonymous.4open.science/r/Emotion-LLaMA'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>""" | |
introduction = ''' | |
For Abilities Involging Multimodal Emotion Understanding: | |
1. Reason: Click **Send** to generate a multimodal emotion description. | |
2. Emotion: Click **Send** to generate an emotion label. | |
3. Visual: Click **Send** to generate a visual description. | |
4. Audio: Click **Send** to generate an audio description. | |
5. No Tag: Input whatever you want and click **Send** without any tagging. | |
You can also simply chat in free form! | |
''' | |
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, scale=8) | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
# gr.Markdown(description) | |
gr.Markdown(article) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
# image = gr.Image(type="pil", tool='sketch', brush_radius=20) | |
image = gr.Video(sources=["upload", "webcam"]) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.5, | |
value=0.2, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
clear = gr.Button("Restart") | |
gr.Markdown(introduction) | |
with gr.Column(): | |
chat_state = gr.State(value=None) | |
img_list = gr.State(value=[]) | |
chatbot = gr.Chatbot(label='Emotion-LLaMA') | |
dataset = gr.Dataset( | |
components=[gr.Textbox(visible=False)], | |
samples=[['No Tag'], ['reason'], ['emotion'], ['visual'], ['audio']], | |
type="index", | |
label='Task Shortcuts', | |
) | |
task_inst = gr.Markdown('**Hint:** Upload your video and chat') | |
with gr.Row(): | |
text_input.render() | |
send = gr.Button("Send", variant='primary', size='sm', scale=1) | |
upload_flag = gr.State(value=0) | |
replace_flag = gr.State(value=0) | |
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples(examples=[ | |
["examples/samplenew_00004251.mp4", "[detection] face", upload_flag, replace_flag, img_list], | |
["examples/sample_00000338.mp4", "The person in video says: Oh no, my phone and wallet are all in my bag. [emotion] Please determine which emotion label in the video represents: happy, sad, neutral, angry, worried, surprise.", upload_flag, replace_flag, img_list], | |
["examples/sample_00000669.mp4", "The person in video says: Why are you looking at me like this? It's just a woman, so you have to have something to do with me. [emotion] Determine the emotional state shown in the video, choosing from happy, sad, neutral, angry, worried, or surprise.", upload_flag, replace_flag, img_list], | |
["examples/sample_00003462.mp4", "The person in video says: Do you believe that you push me around? [emotion] Assess and label the emotion evident in the video: could it be happy, sad, neutral, angry, worried, surprise?", upload_flag, replace_flag, img_list], | |
["examples/sample_00000727.mp4", "The person in video says: No, this, I have to get up! You, I'm sorry, everyone. I'm sorry, it's from the German side. [emotion] Identify the displayed emotion in the video: is it happy, sad, neutral, angry, worried, or surprise?", upload_flag, replace_flag, img_list], | |
["examples/samplenew_00061200.mp4", "The person in video says: Me: I'm not going in anymore, scared. [emotion] Identify the displayed emotion in the video: is it happy, sad, neutral, angry, fear, contempt, doubt, worried, or surprise?", upload_flag, replace_flag, img_list], | |
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, | |
outputs=[upload_flag, replace_flag]) | |
with gr.Column(): | |
gr.Examples(examples=[ | |
["examples/samplenew_00051251.mp4", "In what state is the person in the video, say the following: \"Do you really think so?\"", upload_flag, replace_flag, img_list], | |
["examples/sample_00004735.mp4", "[visual] What are the emotions of the woman in the video?", upload_flag, replace_flag, img_list], | |
["examples/sample_00002422.mp4", "[audio] Analyze the speaker's voice in the video.", upload_flag, replace_flag, img_list], | |
["examples/sample_00001073.mp4", "The person in video says: Make him different from before. I like the way you are now. [reason] Please analyze all the clues in the video and reason out the emotional label of the person in the video.", upload_flag, replace_flag, img_list], | |
["examples/sample_00004671.mp4", "The person in video says: Won't you? Impossible! Fan Xiaomei is not such a person. [reason] What are the facial expressions and vocal tone used in the video? What is the intended meaning behind his words? Which emotion does this reflect?", upload_flag, replace_flag, img_list], | |
["examples/sample_00005854.mp4", "The person in video says: Bastard! Boss, you don't choose, you prefer. [reason] Please integrate information from various modalities to infer the emotional category of the person in the video.", upload_flag, replace_flag, img_list], | |
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, | |
outputs=[upload_flag, replace_flag]) | |
dataset.click( | |
gradio_taskselect, | |
inputs=[dataset], | |
outputs=[text_input, task_inst], | |
show_progress="hidden", | |
postprocess=False, | |
queue=False, | |
) | |
text_input.submit( | |
gradio_ask, | |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], | |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False | |
).success( | |
gradio_stream_answer, | |
[chatbot, chat_state, img_list, temperature], | |
[chatbot, chat_state] | |
).success( | |
gradio_visualize, | |
[chatbot, image], | |
[chatbot], | |
queue=False, | |
) | |
send.click( | |
gradio_ask, | |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], | |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False | |
).success( | |
gradio_stream_answer, | |
[chatbot, chat_state, img_list, temperature], | |
[chatbot, chat_state] | |
).success( | |
gradio_visualize, | |
[chatbot, image], | |
[chatbot], | |
queue=False, | |
) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False) | |
demo.launch(share=True, enable_queue=True) | |
# demo.launch(share=True) |