File size: 7,664 Bytes
			
			| 5126882 3470239 5126882 b4e4003 5126882 3470239 5126882 3470239 5126882 3470239 5126882 3470239 5126882 3470239 5126882 3470239 5126882 70d9fc1 b4e4003 70d9fc1 b4e4003 70d9fc1 5126882 70d9fc1 3470239 5126882 3470239 5126882 b4e4003 5126882 3470239 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | import os
import json
import time
from speech_recognition import Recognizer, Microphone, AudioData, UnknownValueError, RequestError
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from huggingface_hub import login
from product_recommender import ProductRecommender
from objection_handler import load_objections, check_objections
from objection_handler import ObjectionHandler
from env_setup import config
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Hugging Face API setup
huggingface_api_key = config["huggingface_api_key"]
login(token=huggingface_api_key)
# Sentiment Analysis Model
model_name = "tabularisai/multilingual-sentiment-analysis"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Speech Recognition Setup
recognizer = Recognizer()
# Function to analyze sentiment
def preprocess_text(text):
    """Preprocess text for better sentiment analysis."""
    return text.strip().lower()
def analyze_sentiment(text):
    """Analyze sentiment of the text using Hugging Face model."""
    try:
        if not text.strip():
            return "NEUTRAL", 0.0
        
        processed_text = preprocess_text(text)
        result = sentiment_analyzer(processed_text)[0]
        
        print(f"Sentiment Analysis Result: {result}")
        
        # Map raw labels to sentiments
        sentiment_map = {
            'Very Negative': "NEGATIVE",
            'Negative': "NEGATIVE",
            'Neutral': "NEUTRAL",
            'Positive': "POSITIVE",
            'Very Positive': "POSITIVE"
        }
        
        sentiment = sentiment_map.get(result['label'], "NEUTRAL")
        return sentiment, result['score']
        
    except Exception as e:
        print(f"Error in sentiment analysis: {e}")
        return "NEUTRAL", 0.5
def transcribe_with_chunks(objections_dict):
    print("Note: If microphone access fails, please use alternative input.")
    chunks = []
    current_chunk = []
    chunk_start_time = time.time()
    is_listening = False
    try:
        # Try to list available microphones
        available_mics = Microphone.list_microphone_names()
        print(f"Available microphones: {available_mics}")
    except Exception as e:
        print(f"Could not detect microphones: {e}")
    # Replace hardcoded path with environment variable or relative path
    objection_file_path = config.get("OBJECTION_DATA_PATH", "objections.csv")
    product_file_path = config.get("PRODUCT_DATA_PATH", "recommendations.csv")
    # Initialize handlers with semantic search capabilities
    objection_handler = ObjectionHandler(objection_file_path)
    product_recommender = ProductRecommender(product_file_path)
    # Load the embeddings model once
    model = SentenceTransformer('all-MiniLM-L6-v2')
    try:
        # Try multiple device indices
        mic = None
        for device_index in range(10):  # Try first 10 device indices
            try:
                mic = Microphone(device_index=device_index)
                print(f"Using microphone at device index {device_index}")
                break
            except Exception:
                continue
        if mic is None:
            print("No microphone available. Please provide text input.")
            return []
        with mic as source:
            recognizer.adjust_for_ambient_noise(source)
            print("Microphone calibrated. Please speak.")
            
            while True:
                print("Listening for speech...")
                try:
                    audio_data = recognizer.listen(source, timeout=5)
                    text = recognizer.recognize_google(audio_data)
                    if "start listening" in text.lower():
                        is_listening = True
                        print("Listening started. Speak into the microphone.")
                        continue
                    elif "stop listening" in text.lower():
                        is_listening = False
                        print("Listening stopped.")
                        if current_chunk:
                            chunk_text = " ".join(current_chunk)
                            sentiment, score = analyze_sentiment(chunk_text)
                            chunks.append((chunk_text, sentiment, score))
                            current_chunk = []
                        continue
                    if is_listening and text.strip():
                        print(f"Transcription: {text}")
                        current_chunk.append(text)
                        if time.time() - chunk_start_time > 3:
                            if current_chunk:
                                chunk_text = " ".join(current_chunk)
                                
                                # Always process sentiment
                                sentiment, score = analyze_sentiment(chunk_text)
                                chunks.append((chunk_text, sentiment, score))
                                # Get objection responses and check similarity score
                                query_embedding = model.encode([chunk_text])
                                distances, indices = objection_handler.index.search(query_embedding, 1)
                                
                                # If similarity is high enough, show objection response
                                if distances[0][0] < 1.5:  # Threshold for similarity
                                    responses = objection_handler.handle_objection(chunk_text)
                                    if responses:
                                        print("\nSuggested Response:")
                                        for response in responses:
                                            print(f"→ {response}")
                                
                                # Get product recommendations and check similarity score
                                distances, indices = product_recommender.index.search(query_embedding, 1)
                                
                                # If similarity is high enough, show recommendations
                                if distances[0][0] < 1.5:  # Threshold for similarity
                                    recommendations = product_recommender.get_recommendations(chunk_text)
                                    if recommendations:
                                        print(f"\nRecommendations for this response:")
                                        for idx, rec in enumerate(recommendations, 1):
                                            print(f"{idx}. {rec}")
                                
                                print("\n")
                                current_chunk = []
                                chunk_start_time = time.time()
                except UnknownValueError:
                    print("Could not understand the audio.")
                except RequestError as e:
                    print(f"Could not request results from Google Speech Recognition service; {e}")
    except KeyboardInterrupt:
        print("\nExiting...")
        return chunks
if __name__ == "__main__":
    objections_file_path = config.get("OBJECTION_DATA_PATH", "objections.csv")
    objections_dict = load_objections(objections_file_path)
    transcribed_chunks = transcribe_with_chunks(objections_dict)
    print("Final transcriptions and sentiments:", transcribed_chunks) |