Zakia commited on
Commit
3c4b4cb
·
1 Parent(s): 1bc596b

Upload 3 files

Browse files

Initial deployment: Iris Model with Gradio interface.

Files changed (3) hide show
  1. app.py +31 -0
  2. iris_decision_tree_model.pkl +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Bismillahir Rahmaanir Raheem
2
+ # Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen
3
+
4
+
5
+ import pickle
6
+ import gradio as gr
7
+
8
+ # Load the trained model from .pkl file
9
+ with open('iris_decision_tree_model.pkl', 'rb') as file:
10
+ clf = pickle.load(file)
11
+
12
+ # Import iris dataset for target names
13
+ from sklearn import datasets
14
+ iris = datasets.load_iris()
15
+
16
+ # Define the prediction function
17
+ def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
18
+ prediction = clf.predict([[sepal_length, sepal_width, petal_length, petal_width]])
19
+ return iris.target_names[int(prediction[0])]
20
+
21
+ # Create and launch the Gradio interface
22
+ interface = gr.Interface(
23
+ fn=predict_iris,
24
+ inputs=["number", "number", "number", "number"],
25
+ outputs="text",
26
+ live=True,
27
+ title="Iris Flower Model",
28
+ description="An introductory example of machine learning in Python. An iris flower model trained on the iris flower dataset using the decision tree algorithm. The accuracy of the model is: 97.37%. Input the dimensions of the iris flower's sepal and petal to predict its species."
29
+ )
30
+
31
+ interface.launch()
iris_decision_tree_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:278efa90d037ad357b233c676e73cbe6da6427c96fc5bcf3afb629c5e3beed19
3
+ size 2273
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ numpy
2
+ pandas
3
+ sklearn
4
+ gradio