File size: 16,140 Bytes
89c0b51 8fcfb2d 89c0b51 194acd2 287a06f df64cc2 89c0b51 fe8f637 89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import gdown
import traceback
import urllib.request
from contextlib import nullcontext
from os.path import exists as opexists
from os.path import join as opjoin
from typing import Any, Mapping
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader
from configs.configs_base import configs as configs_base
from configs.configs_data import data_configs
from configs.configs_inference import inference_configs
from runner.dumper import DataDumper
from protenix.config import parse_configs, parse_sys_args
from protenix.data.infer_data_pipeline import get_inference_dataloader
from protenix.model.protenix_edit import Protenix
from protenix.utils.distributed import DIST_WRAPPER
from protenix.utils.seed import seed_everything
from protenix.utils.torch_utils import to_device
from protenix.data.dataset import BaseSingleDataset
from protenix.web_service.dependency_url import URL
logger = logging.getLogger(__name__)
def get_recovery(pred_code, gt_code):
pred_code = torch.clamp(pred_code, min=-10, max=10)
epsilon = 1e-6
predicted_classes = (torch.sigmoid(pred_code) > 0.5).float()
# Use the epsilon to ensure no division by zero in recovery computation
recovery = ((predicted_classes == gt_code.float()).float().mean(dim=-1)).clamp(min=epsilon)
return recovery.mean()
class InferenceRunner(object):
def __init__(self, configs: Any) -> None:
self.configs = configs
self.init_env()
self.init_basics()
self.init_model()
self.load_checkpoint()
self.init_dumper(
need_atom_confidence=configs.need_atom_confidence,
sorted_by_ranking_score=configs.sorted_by_ranking_score,
)
def init_env(self) -> None:
self.print(
f"Distributed environment: world size: {DIST_WRAPPER.world_size}, "
+ f"global rank: {DIST_WRAPPER.rank}, local rank: {DIST_WRAPPER.local_rank}"
)
self.use_cuda = torch.cuda.device_count() > 0
if self.use_cuda:
self.device = torch.device("cuda:{}".format(DIST_WRAPPER.local_rank))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
all_gpu_ids = ",".join(str(x) for x in range(torch.cuda.device_count()))
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
logging.info(
f"LOCAL_RANK: {DIST_WRAPPER.local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]"
)
torch.cuda.set_device(self.device)
else:
self.device = torch.device("cpu")
if DIST_WRAPPER.world_size > 1:
dist.init_process_group(backend="nccl")
if self.configs.use_deepspeed_evo_attention:
env = os.getenv("CUTLASS_PATH", None)
self.print(f"env: {env}")
assert (
env is not None
), "if use ds4sci, set `CUTLASS_PATH` env as https://www.deepspeed.ai/tutorials/ds4sci_evoformerattention/"
if env is not None:
logging.info(
"The kernels will be compiled when DS4Sci_EvoformerAttention is called for the first time."
)
use_fastlayernorm = os.getenv("LAYERNORM_TYPE", None)
if use_fastlayernorm == "fast_layernorm":
logging.info(
"The kernels will be compiled when fast_layernorm is called for the first time."
)
logging.info("Finished init ENV.")
def init_basics(self) -> None:
self.dump_dir = self.configs.dump_dir
self.error_dir = opjoin(self.dump_dir, "ERR")
os.makedirs(self.dump_dir, exist_ok=True)
os.makedirs(self.error_dir, exist_ok=True)
def init_model(self) -> None:
self.model = Protenix(self.configs).to(self.device)
def load_checkpoint(self) -> None:
checkpoint_path = self.configs.load_checkpoint_path
if not os.path.exists(checkpoint_path):
raise Exception(f"Given checkpoint path not exist [{checkpoint_path}]")
self.print(
f"Loading from {checkpoint_path}, strict: {self.configs.load_strict}"
)
checkpoint = torch.load(checkpoint_path, self.device)
sample_key = [k for k in checkpoint["model"].keys()][0]
self.print(f"Sampled key: {sample_key}")
if sample_key.startswith("module."): # DDP checkpoint has module. prefix
checkpoint["model"] = {
k[len("module.") :]: v for k, v in checkpoint["model"].items()
}
self.model.load_state_dict(
state_dict=checkpoint["model"],
strict=self.configs.load_strict,
)
self.model.eval()
self.print(f"Finish loading checkpoint.")
def init_dumper(
self, need_atom_confidence: bool = False, sorted_by_ranking_score: bool = True
):
self.dumper = DataDumper(
base_dir=self.dump_dir,
need_atom_confidence=need_atom_confidence,
sorted_by_ranking_score=sorted_by_ranking_score,
)
# Adapted from runner.train.Trainer.evaluate
@torch.no_grad()
def predict(self, data: Mapping[str, Mapping[str, Any]], watermark=False) -> dict[str, torch.Tensor]:
eval_precision = {
"fp32": torch.float32,
"bf16": torch.bfloat16,
"fp16": torch.float16,
}[self.configs.dtype]
enable_amp = (
torch.autocast(device_type="cuda", dtype=eval_precision)
if torch.cuda.is_available()
else nullcontext()
)
data = to_device(data, self.device)
with enable_amp:
prediction, label_dict, _ = self.model(
input_feature_dict=data["input_feature_dict"],
label_full_dict=None,
label_dict=None,
mode="inference",
watermark=watermark
)
return prediction, label_dict
# Adapted from runner.train.Trainer.evaluate
@torch.no_grad()
def detect(self, data: Mapping[str, Mapping[str, Any]]) -> dict[str, torch.Tensor]:
eval_precision = {
"fp32": torch.float32,
"bf16": torch.bfloat16,
"fp16": torch.float16,
}[self.configs.dtype]
enable_amp = (
torch.autocast(device_type="cuda", dtype=eval_precision)
if torch.cuda.is_available()
else nullcontext()
)
data = to_device(data, self.device)
with enable_amp:
prediction, label_dict, _ = self.model(
input_feature_dict=data["input_feature_dict"],
label_dict=data["label_dict"],
label_full_dict=data["label_full_dict"],
mode="inference",
detect=True
)
return prediction, label_dict
def print(self, msg: str):
if DIST_WRAPPER.rank == 0:
logger.info(msg)
def update_model_configs(self, new_configs: Any) -> None:
self.model.configs = new_configs
def download_infercence_cache() -> None:
code_directory = './'
data_cache_dir = os.path.join(code_directory, "release_data/ccd_cache")
os.makedirs(data_cache_dir, exist_ok=True)
if not os.path.exists('./release_data/ccd_cache/components.v20240608.cif'):
file_id = '1e8wxpuEB-0xL_3dlMfZCFo6cL5oSHSUK'
download_url = f'https://drive.google.com/uc?id={file_id}'
output_file = './release_data/ccd_cache/components.v20240608.cif'
gdown.download(download_url, output_file, quiet=False)
if not os.path.exists('./release_data/ccd_cache/components.v20240608.cif.rdkit_mol.pkl'):
file_id = '1R9d678aBfQwTd0Rh15doRmW-fETNdeWf'
# Construct the download URL
download_url = f'https://drive.google.com/uc?id={file_id}'
# Specify the output file name
output_file = './release_data/ccd_cache/components.v20240608.cif.rdkit_mol.pkl'
gdown.download(download_url, output_file, quiet=False)
if not os.path.exists('./checkpoint.pt'):
# Google Drive file ID
file_id = '17zBIRed3xZM8ux0bq2hpf1oFC75Y7OEw'
# URL to download the file
url = f'https://drive.google.com/uc?id={file_id}'
# Download the file and save it as 'checkpoint.pt'
gdown.download(url, './checkpoint.pt', quiet=False)
# checkpoint_path = configs.load_checkpoint_path
# if not opexists(checkpoint_path):
# checkpoint_path = os.path.join(
# code_directory, f"release_data/checkpoint/model_{model_version}.pt"
# )
# os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
# tos_url = URL[f"model_{model_version}"]
# logger.info(f"Downloading model checkpoint from\n {tos_url}...")
# urllib.request.urlretrieve(tos_url, checkpoint_path)
# try:
# ckpt = torch.load(checkpoint_path)
# del ckpt
# except:
# os.remove(checkpoint_path)
# raise RuntimeError(
# "Download model checkpoint failed, please download by yourself with "
# f"wget {tos_url} -O {checkpoint_path}"
# )
# configs.load_checkpoint_path = checkpoint_path
def update_inference_configs(configs: Any, N_token: int):
# Setting the default inference configs for different N_token and N_atom
# when N_token is larger than 3000, the default config might OOM even on a
# A100 80G GPUS,
if N_token > 3840:
configs.skip_amp.confidence_head = False
configs.skip_amp.sample_diffusion = False
elif N_token > 2560:
configs.skip_amp.confidence_head = False
configs.skip_amp.sample_diffusion = True
else:
configs.skip_amp.confidence_head = True
configs.skip_amp.sample_diffusion = True
return configs
def infer_detect(runner: InferenceRunner, configs: Any) -> None:
try:
data_config = configs.data
config_dict = data_config["recentPDB_1536_sample384_0925"].to_dict()
config_dict['base_info']['bioassembly_dict_dir']=configs.subdir
config_dict['base_info']['indices_fpath']=os.path.join(configs.subdir, 'output.csv')
config_dict['base_info']['pdb_list']=""
params = {
"name": 'detection_data',
**config_dict["base_info"],
"cropping_configs": config_dict["cropping_configs"],
"error_dir": configs.subdir,
"msa_featurizer": None,
"template_featurizer": None,
"lig_atom_rename": False,
"shuffle_mols": False,
"shuffle_sym_ids": False,
}
test_dataset = BaseSingleDataset(**params)
test_sampler = None
dataloader = DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=0,
sampler=test_sampler,
collate_fn=lambda batch: batch[0],
)
except Exception as e:
error_message = f"{e}:\n{traceback.format_exc()}"
logger.info(error_message)
with open(opjoin(runner.error_dir, "error.txt"), "a") as f:
f.write(error_message)
return
for batch in dataloader:
prediction, label_dict = runner.detect(batch)
#print(prediction['watermark'])
pred_code = torch.clamp(prediction['watermark'], min=-10, max=10)
predicted_class = torch.sigmoid(pred_code).item() > 0.5
# logger.info(
# f"Recovery: {get_recovery(prediction['watermark'], label_dict['watermark'])}"
# )
return predicted_class and configs.process_success
def infer_predict(runner: InferenceRunner, configs: Any) -> None:
# Data
logger.info(f"Loading data from\n{configs.input_json_path}")
try:
dataloader = get_inference_dataloader(configs=configs)
except Exception as e:
error_message = f"{e}:\n{traceback.format_exc()}"
logger.info(error_message)
with open(opjoin(runner.error_dir, "error.txt"), "a") as f:
f.write(error_message)
return
num_data = len(dataloader.dataset)
for seed in configs.seeds:
seed_everything(seed=seed, deterministic=configs.deterministic)
for batch in dataloader:
try:
data, atom_array, data_error_message = batch[0]
sample_name = data["sample_name"]
if len(data_error_message) > 0:
logger.info(data_error_message)
with open(opjoin(runner.error_dir, f"{sample_name}.txt"), "a") as f:
f.write(data_error_message)
continue
logger.info(
(
f"[Rank {DIST_WRAPPER.rank} ({data['sample_index'] + 1}/{num_data})] {sample_name}: "
f"N_asym {data['N_asym'].item()}, N_token {data['N_token'].item()}, "
f"N_atom {data['N_atom'].item()}, N_msa {data['N_msa'].item()}"
)
)
new_configs = update_inference_configs(configs, data["N_token"].item())
runner.update_model_configs(new_configs)
prediction, label_dict = runner.predict(data, configs.watermark)
runner.dumper.dump(
dataset_name="",
pdb_id=sample_name,
seed=seed,
pred_dict=prediction,
atom_array=atom_array,
entity_poly_type=data["entity_poly_type"],
saved_path=configs.saved_path,
)
logger.info(
f"[Rank {DIST_WRAPPER.rank}] {data['sample_name']} succeeded.\n"
f"Results saved to {configs.dump_dir}"
)
# logger.info(
# f"Recovery: {get_recovery(prediction['watermark'], label_dict['watermark'])}"
# )
torch.cuda.empty_cache()
except Exception as e:
error_message = f"[Rank {DIST_WRAPPER.rank}]{data['sample_name']} {e}:\n{traceback.format_exc()}"
logger.info(error_message)
# Save error info
with open(opjoin(runner.error_dir, f"{sample_name}.txt"), "a") as f:
f.write(error_message)
if hasattr(torch.cuda, "empty_cache"):
torch.cuda.empty_cache()
return sample_name, seed
def main(configs: Any) -> None:
# Runner
runner = InferenceRunner(configs)
infer_predict(runner, configs)
def run() -> None:
LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
logging.basicConfig(
format=LOG_FORMAT,
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
filemode="w",
)
configs_base["use_deepspeed_evo_attention"] = (
os.environ.get("USE_DEEPSPEED_EVO_ATTTENTION", False) == "true"
)
configs = {**configs_base, **{"data": data_configs}, **inference_configs}
configs = parse_configs(
configs=configs,
arg_str=parse_sys_args(),
fill_required_with_null=True,
)
download_infercence_cache(configs, model_version="v0.2.0")
main(configs)
if __name__ == "__main__":
run()
|