from core.model_runtime.entities.model_entities import DefaultParameterName PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = { DefaultParameterName.TEMPERATURE: { "label": { "en_US": "Temperature", "zh_Hans": "温度", }, "type": "float", "help": { "en_US": "Controls randomness. Lower temperature results in less random completions." " As the temperature approaches zero, the model will become deterministic and repetitive." " Higher temperature results in more random completions.", "zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。" "较高的温度会导致更多的随机完成。", }, "required": False, "default": 0.0, "min": 0.0, "max": 1.0, "precision": 2, }, DefaultParameterName.TOP_P: { "label": { "en_US": "Top P", "zh_Hans": "Top P", }, "type": "float", "help": { "en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options" " are considered.", "zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。", }, "required": False, "default": 1.0, "min": 0.0, "max": 1.0, "precision": 2, }, DefaultParameterName.TOP_K: { "label": { "en_US": "Top K", "zh_Hans": "Top K", }, "type": "int", "help": { "en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.", "zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。", }, "required": False, "default": 50, "min": 1, "max": 100, "precision": 0, }, DefaultParameterName.PRESENCE_PENALTY: { "label": { "en_US": "Presence Penalty", "zh_Hans": "存在惩罚", }, "type": "float", "help": { "en_US": "Applies a penalty to the log-probability of tokens already in the text.", "zh_Hans": "对文本中已有的标记的对数概率施加惩罚。", }, "required": False, "default": 0.0, "min": 0.0, "max": 1.0, "precision": 2, }, DefaultParameterName.FREQUENCY_PENALTY: { "label": { "en_US": "Frequency Penalty", "zh_Hans": "频率惩罚", }, "type": "float", "help": { "en_US": "Applies a penalty to the log-probability of tokens that appear in the text.", "zh_Hans": "对文本中出现的标记的对数概率施加惩罚。", }, "required": False, "default": 0.0, "min": 0.0, "max": 1.0, "precision": 2, }, DefaultParameterName.MAX_TOKENS: { "label": { "en_US": "Max Tokens", "zh_Hans": "最大标记", }, "type": "int", "help": { "en_US": "Specifies the upper limit on the length of generated results." " If the generated results are truncated, you can increase this parameter.", "zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。", }, "required": False, "default": 64, "min": 1, "max": 2048, "precision": 0, }, DefaultParameterName.RESPONSE_FORMAT: { "label": { "en_US": "Response Format", "zh_Hans": "回复格式", }, "type": "string", "help": { "en_US": "Set a response format, ensure the output from llm is a valid code block as possible," " such as JSON, XML, etc.", "zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等", }, "required": False, "options": ["JSON", "XML"], }, DefaultParameterName.JSON_SCHEMA: { "label": { "en_US": "JSON Schema", }, "type": "text", "help": { "en_US": "Set a response json schema will ensure LLM to adhere it.", "zh_Hans": "设置返回的json schema,llm将按照它返回", }, "required": False, }, }