Spaces:
Runtime error
Runtime error
File size: 9,168 Bytes
c41cba9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# --------------------------------------------------------
# Set-of-Mark (SoM) Prompting for Visual Grounding in GPT-4V
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by:
# Jianwei Yang (jianwyan@microsoft.com)
# Xueyan Zou (xueyan@cs.wisc.edu)
# Hao Zhang (hzhangcx@connect.ust.hk)
# --------------------------------------------------------
import io
import gradio as gr
import torch
import argparse
from PIL import Image
# seem
from seem.modeling.BaseModel import BaseModel as BaseModel_Seem
from seem.utils.distributed import init_distributed as init_distributed_seem
from seem.modeling import build_model as build_model_seem
from task_adapter.seem.tasks import interactive_seem_m2m_auto, inference_seem_pano, inference_seem_interactive
# semantic sam
from semantic_sam.BaseModel import BaseModel
from semantic_sam import build_model
from semantic_sam.utils.dist import init_distributed_mode
from semantic_sam.utils.arguments import load_opt_from_config_file
from semantic_sam.utils.constants import COCO_PANOPTIC_CLASSES
from task_adapter.semantic_sam.tasks import inference_semsam_m2m_auto, prompt_switch
# sam
from segment_anything import sam_model_registry
from task_adapter.sam.tasks.inference_sam_m2m_auto import inference_sam_m2m_auto
from task_adapter.sam.tasks.inference_sam_m2m_interactive import inference_sam_m2m_interactive
from task_adapter.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
metadata = MetadataCatalog.get('coco_2017_train_panoptic')
from scipy.ndimage import label
import numpy as np
from gpt4v import request_gpt4v
from openai import OpenAI
from pydub import AudioSegment
from pydub.playback import play
import matplotlib.colors as mcolors
css4_colors = mcolors.CSS4_COLORS
color_proposals = [list(mcolors.hex2color(color)) for color in css4_colors.values()]
client = OpenAI()
'''
build args
'''
semsam_cfg = "configs/semantic_sam_only_sa-1b_swinL.yaml"
seem_cfg = "configs/seem_focall_unicl_lang_v1.yaml"
semsam_ckpt = "./swinl_only_sam_many2many.pth"
sam_ckpt = "./sam_vit_h_4b8939.pth"
seem_ckpt = "./seem_focall_v1.pt"
opt_semsam = load_opt_from_config_file(semsam_cfg)
opt_seem = load_opt_from_config_file(seem_cfg)
opt_seem = init_distributed_seem(opt_seem)
'''
build model
'''
model_semsam = BaseModel(opt_semsam, build_model(opt_semsam)).from_pretrained(semsam_ckpt).eval().cuda()
model_sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt).eval().cuda()
model_seem = BaseModel_Seem(opt_seem, build_model_seem(opt_seem)).from_pretrained(seem_ckpt).eval().cuda()
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
model_seem.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True)
history_images = []
history_masks = []
history_texts = []
@torch.no_grad()
def inference(image, slider, mode, alpha, label_mode, anno_mode, *args, **kwargs):
global history_images; history_images = []
global history_masks; history_masks = []
_image = image['background'].convert('RGB')
_mask = image['layers'][0].convert('L') if image['layers'] else None
if slider < 1.5:
model_name = 'seem'
elif slider > 2.5:
model_name = 'sam'
else:
if mode == 'Automatic':
model_name = 'semantic-sam'
if slider < 1.5 + 0.14:
level = [1]
elif slider < 1.5 + 0.28:
level = [2]
elif slider < 1.5 + 0.42:
level = [3]
elif slider < 1.5 + 0.56:
level = [4]
elif slider < 1.5 + 0.70:
level = [5]
elif slider < 1.5 + 0.84:
level = [6]
else:
level = [6, 1, 2, 3, 4, 5]
else:
model_name = 'sam'
if label_mode == 'Alphabet':
label_mode = 'a'
else:
label_mode = '1'
text_size, hole_scale, island_scale=640,100,100
text, text_part, text_thresh = '','','0.0'
with torch.autocast(device_type='cuda', dtype=torch.float16):
semantic=False
if mode == "Interactive":
labeled_array, num_features = label(np.asarray(_mask))
spatial_masks = torch.stack([torch.from_numpy(labeled_array == i+1) for i in range(num_features)])
if model_name == 'semantic-sam':
model = model_semsam
output, mask = inference_semsam_m2m_auto(model, _image, level, text, text_part, text_thresh, text_size, hole_scale, island_scale, semantic, label_mode=label_mode, alpha=alpha, anno_mode=anno_mode, *args, **kwargs)
elif model_name == 'sam':
model = model_sam
if mode == "Automatic":
output, mask = inference_sam_m2m_auto(model, _image, text_size, label_mode, alpha, anno_mode)
elif mode == "Interactive":
output, mask = inference_sam_m2m_interactive(model, _image, spatial_masks, text_size, label_mode, alpha, anno_mode)
elif model_name == 'seem':
model = model_seem
if mode == "Automatic":
output, mask = inference_seem_pano(model, _image, text_size, label_mode, alpha, anno_mode)
elif mode == "Interactive":
output, mask = inference_seem_interactive(model, _image, spatial_masks, text_size, label_mode, alpha, anno_mode)
# convert output to PIL image
history_masks.append(mask)
history_images.append(Image.fromarray(output))
return (output, [])
def gpt4v_response(message, history):
global history_images
global history_texts; history_texts = []
try:
res = request_gpt4v(message, history_images[0])
history_texts.append(res)
return res
except Exception as e:
return None
def highlight(mode, alpha, label_mode, anno_mode, *args, **kwargs):
res = history_texts[0]
# find the seperate numbers in sentence res
res = res.split(' ')
res = [r.replace('.','').replace(',','').replace(')','').replace('"','') for r in res]
# find all numbers in '[]'
res = [r for r in res if '[' in r]
res = [r.split('[')[1] for r in res]
res = [r.split(']')[0] for r in res]
res = [r for r in res if r.isdigit()]
res = list(set(res))
sections = []
for i, r in enumerate(res):
mask_i = history_masks[0][int(r)-1]['segmentation']
sections.append((mask_i, r))
return (history_images[0], sections)
'''
launch app
'''
demo = gr.Blocks()
image = gr.ImageMask(label="Input", type="pil", sources=["upload"], interactive=True, brush=gr.Brush(colors=["#FFFFFF"]))
slider = gr.Slider(1, 3, value=1.8, label="Granularity") # info="Choose in [1, 1.5), [1.5, 2.5), [2.5, 3] for [seem, semantic-sam (multi-level), sam]"
mode = gr.Radio(['Automatic', 'Interactive', ], value='Automatic', label="Segmentation Mode")
anno_mode = gr.CheckboxGroup(choices=["Mark", "Mask", "Box"], value=['Mark'], label="Annotation Mode")
image_out = gr.AnnotatedImage(label="SoM Visual Prompt", height=512)
runBtn = gr.Button("Run")
highlightBtn = gr.Button("Highlight")
bot = gr.Chatbot(label="GPT-4V + SoM", height=256)
slider_alpha = gr.Slider(0, 1, value=0.05, label="Mask Alpha") #info="Choose in [0, 1]"
label_mode = gr.Radio(['Number', 'Alphabet'], value='Number', label="Mark Mode")
title = "Set-of-Mark (SoM) Visual Prompting for Extraordinary Visual Grounding in GPT-4V"
description = "This is a demo for SoM Prompting to unleash extraordinary visual grounding in GPT-4V. Please upload an image and them click the 'Run' button to get the image with marks. Then chat with GPT-4V below!"
with demo:
gr.Markdown("<h1 style='text-align: center'><img src='https://som-gpt4v.github.io/website/img/som_logo.png' style='height:50px;display:inline-block'/> Set-of-Mark (SoM) Prompting Unleashes Extraordinary Visual Grounding in GPT-4V</h1>")
# gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>Project: <a href='https://som-gpt4v.github.io/'>link</a> arXiv: <a href='https://arxiv.org/abs/2310.11441'>link</a> Code: <a href='https://github.com/microsoft/SoM'>link</a></h2>")
with gr.Row():
with gr.Column():
image.render()
slider.render()
with gr.Accordion("Detailed prompt settings (e.g., mark type)", open=False):
with gr.Row():
mode.render()
anno_mode.render()
with gr.Row():
slider_alpha.render()
label_mode.render()
with gr.Column():
image_out.render()
runBtn.render()
highlightBtn.render()
with gr.Row():
gr.ChatInterface(chatbot=bot, fn=gpt4v_response)
runBtn.click(inference, inputs=[image, slider, mode, slider_alpha, label_mode, anno_mode],
outputs = image_out)
highlightBtn.click(highlight, inputs=[image, mode, slider_alpha, label_mode, anno_mode],
outputs = image_out)
demo.queue().launch(share=True,server_port=6092)
|