Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
# Loading a sentiment model | |
sentiment_model = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment") | |
def analyze_sentiment(text): | |
""" | |
Uses a specialized sentiment model better suited for medical text. | |
""" | |
result = sentiment_model(text)[0]["label"] | |
if result.lower() == "positive": | |
return "Positive" | |
elif result.lower() == "negative": | |
return "Concerned" | |
return "Neutral" | |
if __name__ == "__main__": | |
sample_text = "I've been feeling really weak for the past few days." | |
print(f"Sentiment: {analyze_sentiment(sample_text)}") | |