Spaces:
Sleeping
Sleeping
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
model_name = "google/flan-t5-large" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def generate_call_summary(transcript): | |
""" | |
Generates a structured and useful summary of the call. | |
""" | |
input_text = f"Summarize this medical call conversation:\n{transcript}" | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs, max_length=100, min_length=20, length_penalty=2.0, num_beams=5) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
if __name__ == "__main__": | |
sample_text = "Patient: Hi, I need to schedule an appointment as soon as possible. I’ve been feeling really weak and dizzy for the past few days." | |
print(f"Call Summary: {generate_call_summary(sample_text)}") | |