# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from __future__ import absolute_import, division, print_function

import numpy as np
import torch
import torch.nn as nn

from .utils import to_tensor


class VertexJointSelector(nn.Module):
    def __init__(self, vertex_ids=None, use_hands=True, use_feet_keypoints=True, **kwargs):
        super(VertexJointSelector, self).__init__()

        extra_joints_idxs = []

        face_keyp_idxs = np.array(
            [
                vertex_ids["nose"],
                vertex_ids["reye"],
                vertex_ids["leye"],
                vertex_ids["rear"],
                vertex_ids["lear"],
            ],
            dtype=np.int64,
        )

        extra_joints_idxs = np.concatenate([extra_joints_idxs, face_keyp_idxs])

        if use_feet_keypoints:
            feet_keyp_idxs = np.array(
                [
                    vertex_ids["LBigToe"],
                    vertex_ids["LSmallToe"],
                    vertex_ids["LHeel"],
                    vertex_ids["RBigToe"],
                    vertex_ids["RSmallToe"],
                    vertex_ids["RHeel"],
                ],
                dtype=np.int32,
            )

            extra_joints_idxs = np.concatenate([extra_joints_idxs, feet_keyp_idxs])

        if use_hands:
            self.tip_names = ["thumb", "index", "middle", "ring", "pinky"]

            tips_idxs = []
            for hand_id in ["l", "r"]:
                for tip_name in self.tip_names:
                    tips_idxs.append(vertex_ids[hand_id + tip_name])

            extra_joints_idxs = np.concatenate([extra_joints_idxs, tips_idxs])

        self.register_buffer("extra_joints_idxs", to_tensor(extra_joints_idxs, dtype=torch.long))

    def forward(self, vertices, joints):
        extra_joints = torch.index_select(vertices, 1, self.extra_joints_idxs)
        joints = torch.cat([joints, extra_joints], dim=1)

        return joints