"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.

"""

from __future__ import (
    absolute_import,
    division,
    print_function,
    unicode_literals,
)

import code
import logging
import math
import os

import torch
from torch import nn

from .transformers.bert.modeling_bert import (
    BertEmbeddings,
    BertIntermediate,
    BertOutput,
    BertPooler,
    BertPreTrainedModel,
    BertSelfOutput,
)
# import src.modeling.data.config as cfg
# from src.modeling._gcnn import GraphConvolution, GraphResBlock
from .transformers.bert.modeling_utils import prune_linear_layer

LayerNormClass = torch.nn.LayerNorm
BertLayerNorm = torch.nn.LayerNorm
from .transformers.bert import BertConfig


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        if history_state is not None:
            raise
            x_states = torch.cat([history_state, hidden_states], dim=1)
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(x_states)
            mixed_value_layer = self.value(x_states)
        else:
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        # print('mixed_query_layer', mixed_query_layer.shape, mixed_key_layer.shape, mixed_value_layer.shape)
        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        # print('query_layer', query_layer.shape, key_layer.shape, value_layer.shape)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            raise
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, )
        return outputs


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

    def forward(self, input_tensor, attention_mask, head_mask=None, history_state=None):
        self_outputs = self.self(input_tensor, attention_mask, head_mask, history_state)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = (attention_output, ) + self_outputs[1:]    # add attentions if we output them
        return outputs


class AttLayer(nn.Module):
    def __init__(self, config):
        super(AttLayer, self).__init__()
        self.attention = BertAttention(config)

        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def MHA(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask, history_state)
        attention_output = attention_outputs[0]

        # print('attention_output', hidden_states.shape, attention_output.shape)

        intermediate_output = self.intermediate(attention_output)
        # print('intermediate_output', intermediate_output.shape)
        layer_output = self.output(intermediate_output, attention_output)
        # print('layer_output', layer_output.shape)
        outputs = (layer_output, ) + attention_outputs[1:]    # add attentions if we output them
        return outputs

    def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
        return self.MHA(hidden_states, attention_mask, head_mask, history_state)


class AttEncoder(nn.Module):
    def __init__(self, config):
        super(AttEncoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = nn.ModuleList([AttLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, attention_mask, head_mask=None, encoder_history_states=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            history_state = None if encoder_history_states is None else encoder_history_states[i]
            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], history_state)
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1], )

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        outputs = (hidden_states, )
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states, )
        if self.output_attentions:
            outputs = outputs + (all_attentions, )

        return outputs    # outputs, (hidden states), (attentions)


class EncoderBlock(BertPreTrainedModel):
    def __init__(self, config):
        super(EncoderBlock, self).__init__(config)
        self.config = config
        # self.embeddings = BertEmbeddings(config)
        self.encoder = AttEncoder(config)
        # self.pooler = BertPooler(config)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.img_dim = config.img_feature_dim

        try:
            self.use_img_layernorm = config.use_img_layernorm
        except:
            self.use_img_layernorm = None

        self.img_embedding = nn.Linear(self.img_dim, self.config.hidden_size, bias=True)
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        if self.use_img_layernorm:
            self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.img_layer_norm_eps)

        self.apply(self.init_weights)

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        img_feats,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None
    ):

        batch_size = len(img_feats)
        seq_length = len(img_feats[0])
        input_ids = torch.zeros([batch_size, seq_length], dtype=torch.long).to(img_feats.device)

        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
            # print('-------------------')
            # print('position_ids', seq_length, position_ids.shape)
            #  494 torch.Size([2, 494])

        position_embeddings = self.position_embeddings(position_ids)
        # print('position_embeddings', position_embeddings.shape, self.config.max_position_embeddings, self.config.hidden_size)
        # torch.Size([2, 494, 1024]) 512 1024
        #  torch.Size([2, 494, 256]) 512 256

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        else:
            raise

        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        else:
            raise

        if attention_mask.dim() == 2:
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        elif attention_mask.dim() == 3:
            extended_attention_mask = attention_mask.unsqueeze(1)
        else:
            raise NotImplementedError

        # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = extended_attention_mask.to(
            dtype=img_feats.dtype
        )    # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        if head_mask is not None:
            raise
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
                    -1
                )    # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )    # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        # Project input token features to have spcified hidden size
        # print('img_feats', img_feats.shape)   # torch.Size([2, 494, 2051])
        img_embedding_output = self.img_embedding(img_feats)
        # print('img_embedding_output', img_embedding_output.shape)   # torch.Size([2, 494, 1024])

        # We empirically observe that adding an additional learnable position embedding leads to more stable training
        embeddings = position_embeddings + img_embedding_output

        if self.use_img_layernorm:
            embeddings = self.LayerNorm(embeddings)
        # embeddings = self.dropout(embeddings)

        # print('extended_attention_mask', extended_attention_mask.shape)  # torch.Size([2, 1, 1, 494])
        encoder_outputs = self.encoder(embeddings, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]

        outputs = (sequence_output, )
        if self.config.output_hidden_states:
            all_hidden_states = encoder_outputs[1]
            outputs = outputs + (all_hidden_states, )
        if self.config.output_attentions:
            all_attentions = encoder_outputs[-1]
            outputs = outputs + (all_attentions, )

        return outputs


def get_att_block(
    img_feature_dim=2048,
    output_feat_dim=512,
    hidden_feat_dim=1024,
    num_attention_heads=4,
    num_hidden_layers=1
):

    config_class = BertConfig
    config = config_class.from_pretrained('lib/pymafx/models/transformers/bert/bert-base-uncased/')

    interm_size_scale = 2

    config.output_attentions = False
    # config.hidden_dropout_prob = args.drop_out
    config.img_feature_dim = img_feature_dim
    # config.output_feature_dim = output_feat_dim
    config.hidden_size = hidden_feat_dim
    config.intermediate_size = int(config.hidden_size * interm_size_scale)
    config.num_hidden_layers = num_hidden_layers
    config.num_attention_heads = num_attention_heads
    config.max_position_embeddings = 900

    # init a transformer encoder and append it to a list
    assert config.hidden_size % config.num_attention_heads == 0

    att_model = EncoderBlock(config=config)

    return att_model


class Graphormer(BertPreTrainedModel):
    '''
    The archtecture of a transformer encoder block we used in Graphormer
    '''
    def __init__(self, config):
        super(Graphormer, self).__init__(config)
        self.config = config
        self.bert = EncoderBlock(config)
        self.cls_head = nn.Linear(config.hidden_size, self.config.output_feature_dim)
        self.residual = nn.Linear(config.img_feature_dim, self.config.output_feature_dim)
        self.apply(self.init_weights)

    def forward(
        self,
        img_feats,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
        masked_lm_labels=None,
        next_sentence_label=None,
        position_ids=None,
        head_mask=None
    ):
        '''
        # self.bert has three outputs
        # predictions[0]: output tokens
        # predictions[1]: all_hidden_states, if enable "self.config.output_hidden_states"
        # predictions[2]: attentions, if enable "self.config.output_attentions"
        '''
        predictions = self.bert(
            img_feats=img_feats,
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            head_mask=head_mask
        )

        # We use "self.cls_head" to perform dimensionality reduction. We don't use it for classification.
        pred_score = self.cls_head(predictions[0])
        res_img_feats = self.residual(img_feats)
        pred_score = pred_score + res_img_feats
        # print('pred_score', pred_score.shape)

        if self.config.output_attentions and self.config.output_hidden_states:
            return pred_score, predictions[1], predictions[-1]
        else:
            return pred_score