Spaces:
Runtime error
Runtime error
| """ | |
| borrowed from https://github.com/vchoutas/expose/blob/master/expose/models/backbone/hrnet.py | |
| """ | |
| import os.path as osp | |
| import torch | |
| import torch.nn as nn | |
| from torchvision.models.resnet import BasicBlock, Bottleneck | |
| BN_MOMENTUM = 0.1 | |
| def load_HRNet(pretrained=False): | |
| hr_net_cfg_dict = { | |
| "use_old_impl": False, | |
| "pretrained_layers": ["*"], | |
| "stage1": { | |
| "num_modules": 1, | |
| "num_branches": 1, | |
| "num_blocks": [4], | |
| "num_channels": [64], | |
| "block": "BOTTLENECK", | |
| "fuse_method": "SUM", | |
| }, | |
| "stage2": { | |
| "num_modules": 1, | |
| "num_branches": 2, | |
| "num_blocks": [4, 4], | |
| "num_channels": [48, 96], | |
| "block": "BASIC", | |
| "fuse_method": "SUM", | |
| }, | |
| "stage3": { | |
| "num_modules": 4, | |
| "num_branches": 3, | |
| "num_blocks": [4, 4, 4], | |
| "num_channels": [48, 96, 192], | |
| "block": "BASIC", | |
| "fuse_method": "SUM", | |
| }, | |
| "stage4": { | |
| "num_modules": 3, | |
| "num_branches": 4, | |
| "num_blocks": [4, 4, 4, 4], | |
| "num_channels": [48, 96, 192, 384], | |
| "block": "BASIC", | |
| "fuse_method": "SUM", | |
| }, | |
| } | |
| hr_net_cfg = hr_net_cfg_dict | |
| model = HighResolutionNet(hr_net_cfg) | |
| return model | |
| class HighResolutionModule(nn.Module): | |
| def __init__( | |
| self, | |
| num_branches, | |
| blocks, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| fuse_method, | |
| multi_scale_output=True, | |
| ): | |
| super(HighResolutionModule, self).__init__() | |
| self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
| self.num_inchannels = num_inchannels | |
| self.fuse_method = fuse_method | |
| self.num_branches = num_branches | |
| self.multi_scale_output = multi_scale_output | |
| self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(True) | |
| def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): | |
| if num_branches != len(num_blocks): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(num_branches, len(num_blocks)) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_channels): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( | |
| num_branches, len(num_channels) | |
| ) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_inchannels): | |
| error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( | |
| num_branches, len(num_inchannels) | |
| ) | |
| raise ValueError(error_msg) | |
| def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
| downsample = None | |
| if ( | |
| stride != 1 or | |
| self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion | |
| ): | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index], | |
| stride, | |
| downsample, | |
| ) | |
| ) | |
| self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | |
| for i in range(1, num_blocks[branch_index]): | |
| layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| num_inchannels = self.num_inchannels | |
| fuse_layers = [] | |
| for i in range(num_branches if self.multi_scale_output else 1): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_inchannels[i], | |
| 1, | |
| 1, | |
| 0, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_inchannels[i]), | |
| nn.Upsample(scale_factor=2**(j - i), mode="nearest"), | |
| ) | |
| ) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv3x3s = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| num_outchannels_conv3x3 = num_inchannels[i] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| ) | |
| ) | |
| else: | |
| num_outchannels_conv3x3 = num_inchannels[j] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| nn.ReLU(True), | |
| ) | |
| ) | |
| fuse_layer.append(nn.Sequential(*conv3x3s)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def get_num_inchannels(self): | |
| return self.num_inchannels | |
| def forward(self, x): | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
| for j in range(1, self.num_branches): | |
| if i == j: | |
| y = y + x[j] | |
| else: | |
| y = y + self.fuse_layers[i][j](x[j]) | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} | |
| class HighResolutionNet(nn.Module): | |
| def __init__(self, cfg, **kwargs): | |
| self.inplanes = 64 | |
| super(HighResolutionNet, self).__init__() | |
| use_old_impl = cfg.get("use_old_impl") | |
| self.use_old_impl = use_old_impl | |
| # stem net | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.stage1_cfg = cfg.get("stage1", {}) | |
| num_channels = self.stage1_cfg["num_channels"][0] | |
| block = blocks_dict[self.stage1_cfg["block"]] | |
| num_blocks = self.stage1_cfg["num_blocks"][0] | |
| self.layer1 = self._make_layer(block, num_channels, num_blocks) | |
| stage1_out_channel = block.expansion * num_channels | |
| self.stage2_cfg = cfg.get("stage2", {}) | |
| num_channels = self.stage2_cfg.get("num_channels", (32, 64)) | |
| block = blocks_dict[self.stage2_cfg.get("block")] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| stage2_num_channels = num_channels | |
| self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) | |
| self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) | |
| self.stage3_cfg = cfg.get("stage3") | |
| num_channels = self.stage3_cfg["num_channels"] | |
| block = blocks_dict[self.stage3_cfg["block"]] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| stage3_num_channels = num_channels | |
| self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) | |
| self.stage4_cfg = cfg.get("stage4") | |
| num_channels = self.stage4_cfg["num_channels"] | |
| block = blocks_dict[self.stage4_cfg["block"]] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| stage_4_out_channels = num_channels | |
| self.stage4, pre_stage_channels = self._make_stage( | |
| self.stage4_cfg, num_channels, multi_scale_output=not self.use_old_impl | |
| ) | |
| stage4_num_channels = num_channels | |
| self.output_channels_dim = pre_stage_channels | |
| self.pretrained_layers = cfg["pretrained_layers"] | |
| self.init_weights() | |
| self.avg_pooling = nn.AdaptiveAvgPool2d(1) | |
| if use_old_impl: | |
| in_dims = ( | |
| 2**2 * stage2_num_channels[-1] + 2**1 * stage3_num_channels[-1] + | |
| stage_4_out_channels[-1] | |
| ) | |
| else: | |
| # TODO: Replace with parameters | |
| in_dims = 4 * 384 | |
| self.subsample_4 = self._make_subsample_layer( | |
| in_channels=stage4_num_channels[0], num_layers=3 | |
| ) | |
| self.subsample_3 = self._make_subsample_layer( | |
| in_channels=stage2_num_channels[-1], num_layers=2 | |
| ) | |
| self.subsample_2 = self._make_subsample_layer( | |
| in_channels=stage3_num_channels[-1], num_layers=1 | |
| ) | |
| self.conv_layers = self._make_conv_layer(in_channels=in_dims, num_layers=5) | |
| def get_output_dim(self): | |
| base_output = {f"layer{idx + 1}": val for idx, val in enumerate(self.output_channels_dim)} | |
| output = base_output.copy() | |
| for key in base_output: | |
| output[f"{key}_avg_pooling"] = output[key] | |
| output["concat"] = 2048 | |
| return output | |
| def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| 3, | |
| 1, | |
| 1, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(num_channels_cur_layer[i]), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv3x3s = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| inchannels = num_channels_pre_layer[-1] | |
| outchannels = ( | |
| num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | |
| ) | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | |
| nn.BatchNorm2d(outchannels), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| transition_layers.append(nn.Sequential(*conv3x3s)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _make_conv_layer(self, in_channels=2048, num_layers=3, num_filters=2048, stride=1): | |
| layers = [] | |
| for i in range(num_layers): | |
| downsample = nn.Conv2d(in_channels, num_filters, stride=1, kernel_size=1, bias=False) | |
| layers.append(Bottleneck(in_channels, num_filters // 4, downsample=downsample)) | |
| in_channels = num_filters | |
| return nn.Sequential(*layers) | |
| def _make_subsample_layer(self, in_channels=96, num_layers=3, stride=2): | |
| layers = [] | |
| for i in range(num_layers): | |
| layers.append( | |
| nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=2 * in_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1, | |
| ) | |
| ) | |
| in_channels = 2 * in_channels | |
| layers.append(nn.BatchNorm2d(in_channels, momentum=BN_MOMENTUM)) | |
| layers.append(nn.ReLU(inplace=True)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True, log=False): | |
| num_modules = layer_config["num_modules"] | |
| num_branches = layer_config["num_branches"] | |
| num_blocks = layer_config["num_blocks"] | |
| num_channels = layer_config["num_channels"] | |
| block = blocks_dict[layer_config["block"]] | |
| fuse_method = layer_config["fuse_method"] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multi_scale_output and i == num_modules - 1: | |
| reset_multi_scale_output = False | |
| else: | |
| reset_multi_scale_output = True | |
| modules.append( | |
| HighResolutionModule( | |
| num_branches, | |
| block, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| fuse_method, | |
| reset_multi_scale_output, | |
| ) | |
| ) | |
| modules[-1].log = log | |
| num_inchannels = modules[-1].get_num_inchannels() | |
| return nn.Sequential(*modules), num_inchannels | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.bn2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(self.stage2_cfg["num_branches"]): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(self.stage3_cfg["num_branches"]): | |
| if self.transition2[i] is not None: | |
| if i < self.stage2_cfg["num_branches"]: | |
| x_list.append(self.transition2[i](y_list[i])) | |
| else: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(self.stage4_cfg["num_branches"]): | |
| if self.transition3[i] is not None: | |
| if i < self.stage3_cfg["num_branches"]: | |
| x_list.append(self.transition3[i](y_list[i])) | |
| else: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| if not self.use_old_impl: | |
| y_list = self.stage4(x_list) | |
| output = {} | |
| for idx, x in enumerate(y_list): | |
| output[f"layer{idx + 1}"] = x | |
| feat_list = [] | |
| if self.use_old_impl: | |
| x3 = self.subsample_3(x_list[1]) | |
| x2 = self.subsample_2(x_list[2]) | |
| x1 = x_list[3] | |
| feat_list = [x3, x2, x1] | |
| else: | |
| x4 = self.subsample_4(y_list[0]) | |
| x3 = self.subsample_3(y_list[1]) | |
| x2 = self.subsample_2(y_list[2]) | |
| x1 = y_list[3] | |
| feat_list = [x4, x3, x2, x1] | |
| xf = self.conv_layers(torch.cat(feat_list, dim=1)) | |
| xf = xf.mean(dim=(2, 3)) | |
| xf = xf.view(xf.size(0), -1) | |
| output["concat"] = xf | |
| # y_list = self.stage4(x_list) | |
| # output['stage4'] = y_list[0] | |
| # output['stage4_avg_pooling'] = self.avg_pooling(y_list[0]).view( | |
| # *y_list[0].shape[:2]) | |
| # concat_outputs = y_list + x_list | |
| # output['concat'] = torch.cat([ | |
| # self.avg_pooling(tensor).view(*tensor.shape[:2]) | |
| # for tensor in concat_outputs], | |
| # dim=1) | |
| return output | |
| def init_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ["bias"]: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.ConvTranspose2d): | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ["bias"]: | |
| nn.init.constant_(m.bias, 0) | |
| def load_weights(self, pretrained=""): | |
| pretrained = osp.expandvars(pretrained) | |
| if osp.isfile(pretrained): | |
| pretrained_state_dict = torch.load(pretrained, map_location=torch.device("cpu")) | |
| need_init_state_dict = {} | |
| for name, m in pretrained_state_dict.items(): | |
| if ( | |
| name.split(".")[0] in self.pretrained_layers or self.pretrained_layers[0] == "*" | |
| ): | |
| need_init_state_dict[name] = m | |
| missing, unexpected = self.load_state_dict(need_init_state_dict, strict=False) | |
| elif pretrained: | |
| raise ValueError("{} is not exist!".format(pretrained)) | |