############################################################################### # # Adapted from https://github.com/lrjconan/GRAN/ which in turn is adapted from https://github.com/JiaxuanYou/graph-generation # ############################################################################### # import graph_tool.all as gt ##Navigate to the ./util/orca directory and compile orca.cpp # g++ -O2 -std=c++11 -o orca orca.cpp import os import copy import torch import torch.nn as nn import numpy as np import networkx as nx import subprocess as sp import concurrent.futures import pygsp as pg import secrets from string import ascii_uppercase, digits from datetime import datetime from scipy.linalg import eigvalsh from scipy.stats import chi2 from analysis.dist_helper import compute_mmd, gaussian_emd, gaussian, emd, gaussian_tv, disc from torch_geometric.utils import to_networkx import wandb from collections import defaultdict PRINT_TIME = False __all__ = ['degree_stats', 'clustering_stats', 'orbit_stats_all', 'spectral_stats', 'eval_acc_lobster_graph'] def degree_worker(G): return np.array(nx.degree_histogram(G)) def degree_stats(graph_ref_list, graph_pred_list, is_parallel=True, compute_emd=False): ''' Compute the distance between the degree distributions of two unordered sets of graphs. Args: graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated ''' sample_ref = [] sample_pred = [] # in case an empty graph is generated graph_pred_list_remove_empty = [ G for G in graph_pred_list if not G.number_of_nodes() == 0 ] prev = datetime.now() if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for deg_hist in executor.map(degree_worker, graph_ref_list): sample_ref.append(deg_hist) with concurrent.futures.ThreadPoolExecutor() as executor: for deg_hist in executor.map(degree_worker, graph_pred_list_remove_empty): sample_pred.append(deg_hist) else: for i in range(len(graph_ref_list)): degree_temp = np.array(nx.degree_histogram(graph_ref_list[i])) sample_ref.append(degree_temp) for i in range(len(graph_pred_list_remove_empty)): degree_temp = np.array( nx.degree_histogram(graph_pred_list_remove_empty[i])) sample_pred.append(degree_temp) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) if compute_emd: # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) else: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian) elapsed = datetime.now() - prev if PRINT_TIME: print('Time computing degree mmd: ', elapsed) return mmd_dist ############################################################################### def spectral_worker(G, n_eigvals=-1): # eigs = nx.laplacian_spectrum(G) try: eigs = eigvalsh(nx.normalized_laplacian_matrix(G).todense()) except: eigs = np.zeros(G.number_of_nodes()) if n_eigvals > 0: eigs = eigs[1:n_eigvals + 1] spectral_pmf, _ = np.histogram(eigs, bins=200, range=(-1e-5, 2), density=False) spectral_pmf = spectral_pmf / spectral_pmf.sum() return spectral_pmf def get_spectral_pmf(eigs, max_eig): spectral_pmf, _ = np.histogram(np.clip(eigs, 0, max_eig), bins=200, range=(-1e-5, max_eig), density=False) spectral_pmf = spectral_pmf / spectral_pmf.sum() return spectral_pmf def eigval_stats(eig_ref_list, eig_pred_list, max_eig=20, is_parallel=True, compute_emd=False): ''' Compute the distance between the degree distributions of two unordered sets of graphs. Args: graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated ''' sample_ref = [] sample_pred = [] prev = datetime.now() if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(get_spectral_pmf, eig_ref_list, [max_eig for i in range(len(eig_ref_list))]): sample_ref.append(spectral_density) with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(get_spectral_pmf, eig_pred_list, [max_eig for i in range(len(eig_ref_list))]): sample_pred.append(spectral_density) else: for i in range(len(eig_ref_list)): spectral_temp = get_spectral_pmf(eig_ref_list[i]) sample_ref.append(spectral_temp) for i in range(len(eig_pred_list)): spectral_temp = get_spectral_pmf(eig_pred_list[i]) sample_pred.append(spectral_temp) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) if compute_emd: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) else: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian) elapsed = datetime.now() - prev if PRINT_TIME: print('Time computing eig mmd: ', elapsed) return mmd_dist def eigh_worker(G): L = nx.normalized_laplacian_matrix(G).todense() try: eigvals, eigvecs = np.linalg.eigh(L) except: eigvals = np.zeros(L[0, :].shape) eigvecs = np.zeros(L.shape) return (eigvals, eigvecs) def compute_list_eigh(graph_list, is_parallel=False): eigval_list = [] eigvec_list = [] if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for e_U in executor.map(eigh_worker, graph_list): eigval_list.append(e_U[0]) eigvec_list.append(e_U[1]) else: for i in range(len(graph_list)): e_U = eigh_worker(graph_list[i]) eigval_list.append(e_U[0]) eigvec_list.append(e_U[1]) return eigval_list, eigvec_list def get_spectral_filter_worker(eigvec, eigval, filters, bound=1.4): ges = filters.evaluate(eigval) linop = [] for ge in ges: linop.append(eigvec @ np.diag(ge) @ eigvec.T) linop = np.array(linop) norm_filt = np.sum(linop ** 2, axis=2) hist_range = [0, bound] hist = np.array([np.histogram(x, range=hist_range, bins=100)[0] for x in norm_filt]) # NOTE: change number of bins return hist.flatten() def spectral_filter_stats(eigvec_ref_list, eigval_ref_list, eigvec_pred_list, eigval_pred_list, is_parallel=False, compute_emd=False): ''' Compute the distance between the eigvector sets. Args: graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated ''' prev = datetime.now() class DMG(object): """Dummy Normalized Graph""" lmax = 2 n_filters = 12 filters = pg.filters.Abspline(DMG, n_filters) bound = np.max(filters.evaluate(np.arange(0, 2, 0.01))) sample_ref = [] sample_pred = [] if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(get_spectral_filter_worker, eigvec_ref_list, eigval_ref_list, [filters for i in range(len(eigval_ref_list))], [bound for i in range(len(eigval_ref_list))]): sample_ref.append(spectral_density) with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(get_spectral_filter_worker, eigvec_pred_list, eigval_pred_list, [filters for i in range(len(eigval_ref_list))], [bound for i in range(len(eigval_ref_list))]): sample_pred.append(spectral_density) else: for i in range(len(eigval_ref_list)): try: spectral_temp = get_spectral_filter_worker(eigvec_ref_list[i], eigval_ref_list[i], filters, bound) sample_ref.append(spectral_temp) except: pass for i in range(len(eigval_pred_list)): try: spectral_temp = get_spectral_filter_worker(eigvec_pred_list[i], eigval_pred_list[i], filters, bound) sample_pred.append(spectral_temp) except: pass if compute_emd: # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) else: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv) elapsed = datetime.now() - prev if PRINT_TIME: print('Time computing spectral filter stats: ', elapsed) return mmd_dist def spectral_stats(graph_ref_list, graph_pred_list, is_parallel=True, n_eigvals=-1, compute_emd=False): ''' Compute the distance between the degree distributions of two unordered sets of graphs. Args: graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated ''' sample_ref = [] sample_pred = [] # in case an empty graph is generated graph_pred_list_remove_empty = [ G for G in graph_pred_list if not G.number_of_nodes() == 0 ] prev = datetime.now() if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(spectral_worker, graph_ref_list, [n_eigvals for i in graph_ref_list]): sample_ref.append(spectral_density) with concurrent.futures.ThreadPoolExecutor() as executor: for spectral_density in executor.map(spectral_worker, graph_pred_list_remove_empty, [n_eigvals for i in graph_ref_list]): sample_pred.append(spectral_density) else: for i in range(len(graph_ref_list)): spectral_temp = spectral_worker(graph_ref_list[i], n_eigvals) sample_ref.append(spectral_temp) for i in range(len(graph_pred_list_remove_empty)): spectral_temp = spectral_worker(graph_pred_list_remove_empty[i], n_eigvals) sample_pred.append(spectral_temp) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) if compute_emd: # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd) mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd) else: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv) # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian) elapsed = datetime.now() - prev if PRINT_TIME: print('Time computing degree mmd: ', elapsed) return mmd_dist ############################################################################### def clustering_worker(param): G, bins = param clustering_coeffs_list = list(nx.clustering(G).values()) hist, _ = np.histogram( clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False) return hist def clustering_stats(graph_ref_list, graph_pred_list, bins=100, is_parallel=True, compute_emd=False): sample_ref = [] sample_pred = [] graph_pred_list_remove_empty = [ G for G in graph_pred_list if not G.number_of_nodes() == 0 ] prev = datetime.now() if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for clustering_hist in executor.map(clustering_worker, [(G, bins) for G in graph_ref_list]): sample_ref.append(clustering_hist) with concurrent.futures.ThreadPoolExecutor() as executor: for clustering_hist in executor.map( clustering_worker, [(G, bins) for G in graph_pred_list_remove_empty]): sample_pred.append(clustering_hist) # check non-zero elements in hist # total = 0 # for i in range(len(sample_pred)): # nz = np.nonzero(sample_pred[i])[0].shape[0] # total += nz # print(total) else: for i in range(len(graph_ref_list)): clustering_coeffs_list = list(nx.clustering(graph_ref_list[i]).values()) hist, _ = np.histogram( clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False) sample_ref.append(hist) for i in range(len(graph_pred_list_remove_empty)): clustering_coeffs_list = list( nx.clustering(graph_pred_list_remove_empty[i]).values()) hist, _ = np.histogram( clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False) sample_pred.append(hist) if compute_emd: # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN # mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd, sigma=1.0 / 10) mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd, sigma=1.0 / 10, distance_scaling=bins) else: mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv, sigma=1.0 / 10) elapsed = datetime.now() - prev if PRINT_TIME: print('Time computing clustering mmd: ', elapsed) return mmd_dist # maps motif/orbit name string to its corresponding list of indices from orca output motif_to_indices = { '3path': [1, 2], '4cycle': [8], } COUNT_START_STR = 'orbit counts:' def edge_list_reindexed(G): idx = 0 id2idx = dict() for u in G.nodes(): id2idx[str(u)] = idx idx += 1 edges = [] for (u, v) in G.edges(): edges.append((id2idx[str(u)], id2idx[str(v)])) return edges def orca(graph): # tmp_fname = f'analysis/orca/tmp_{"".join(secrets.choice(ascii_uppercase + digits) for i in range(8))}.txt' tmp_fname = f'orca/tmp_{"".join(secrets.choice(ascii_uppercase + digits) for i in range(8))}.txt' tmp_fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), tmp_fname) # print(tmp_fname, flush=True) f = open(tmp_fname, 'w') f.write( str(graph.number_of_nodes()) + ' ' + str(graph.number_of_edges()) + '\n') for (u, v) in edge_list_reindexed(graph): f.write(str(u) + ' ' + str(v) + '\n') f.close() output = sp.check_output( [str(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'orca/orca')), 'node', '4', tmp_fname, 'std']) output = output.decode('utf8').strip() idx = output.find(COUNT_START_STR) + len(COUNT_START_STR) + 2 output = output[idx:] node_orbit_counts = np.array([ list(map(int, node_cnts.strip().split(' '))) for node_cnts in output.strip('\n').split('\n') ]) try: os.remove(tmp_fname) except OSError: pass return node_orbit_counts def motif_stats(graph_ref_list, graph_pred_list, motif_type='4cycle', ground_truth_match=None, bins=100, compute_emd=False): # graph motif counts (int for each graph) # normalized by graph size total_counts_ref = [] total_counts_pred = [] num_matches_ref = [] num_matches_pred = [] graph_pred_list_remove_empty = [G for G in graph_pred_list if not G.number_of_nodes() == 0] indices = motif_to_indices[motif_type] for G in graph_ref_list: orbit_counts = orca(G) motif_counts = np.sum(orbit_counts[:, indices], axis=1) if ground_truth_match is not None: match_cnt = 0 for elem in motif_counts: if elem == ground_truth_match: match_cnt += 1 num_matches_ref.append(match_cnt / G.number_of_nodes()) # hist, _ = np.histogram( # motif_counts, bins=bins, density=False) motif_temp = np.sum(motif_counts) / G.number_of_nodes() total_counts_ref.append(motif_temp) for G in graph_pred_list_remove_empty: orbit_counts = orca(G) motif_counts = np.sum(orbit_counts[:, indices], axis=1) if ground_truth_match is not None: match_cnt = 0 for elem in motif_counts: if elem == ground_truth_match: match_cnt += 1 num_matches_pred.append(match_cnt / G.number_of_nodes()) motif_temp = np.sum(motif_counts) / G.number_of_nodes() total_counts_pred.append(motif_temp) total_counts_ref = np.array(total_counts_ref)[:, None] total_counts_pred = np.array(total_counts_pred)[:, None] if compute_emd: # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN # mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=emd, is_hist=False) mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False) else: mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False) return mmd_dist def orbit_stats_all(graph_ref_list, graph_pred_list, compute_emd=False): total_counts_ref = [] total_counts_pred = [] graph_pred_list_remove_empty = [ G for G in graph_pred_list if not G.number_of_nodes() == 0 ] for G in graph_ref_list: orbit_counts = orca(G) orbit_counts_graph = np.sum(orbit_counts, axis=0) / G.number_of_nodes() total_counts_ref.append(orbit_counts_graph) for G in graph_pred_list: orbit_counts = orca(G) orbit_counts_graph = np.sum(orbit_counts, axis=0) / G.number_of_nodes() total_counts_pred.append(orbit_counts_graph) total_counts_ref = np.array(total_counts_ref) total_counts_pred = np.array(total_counts_pred) # mmd_dist = compute_mmd( # total_counts_ref, # total_counts_pred, # kernel=gaussian, # is_hist=False, # sigma=30.0) # mmd_dist = compute_mmd( # total_counts_ref, # total_counts_pred, # kernel=gaussian_tv, # is_hist=False, # sigma=30.0) if compute_emd: # mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=emd, sigma=30.0) # EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False, sigma=30.0) else: mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian_tv, is_hist=False, sigma=30.0) return mmd_dist def eval_acc_lobster_graph(G_list): G_list = [copy.deepcopy(gg) for gg in G_list] count = 0 for gg in G_list: if is_lobster_graph(gg): count += 1 return count / float(len(G_list)) def eval_acc_tree_graph(G_list): count = 0 for gg in G_list: if nx.is_tree(gg): count += 1 return count / float(len(G_list)) def eval_acc_grid_graph(G_list, grid_start=10, grid_end=20): count = 0 for gg in G_list: if is_grid_graph(gg): count += 1 return count / float(len(G_list)) def eval_acc_sbm_graph(G_list, p_intra=0.3, p_inter=0.005, strict=True, refinement_steps=1000, is_parallel=True): count = 0.0 if is_parallel: with concurrent.futures.ThreadPoolExecutor() as executor: for prob in executor.map(is_sbm_graph, [gg for gg in G_list], [p_intra for i in range(len(G_list))], [p_inter for i in range(len(G_list))], [strict for i in range(len(G_list))], [refinement_steps for i in range(len(G_list))]): count += prob else: for gg in G_list: count += is_sbm_graph(gg, p_intra=p_intra, p_inter=p_inter, strict=strict, refinement_steps=refinement_steps) return count / float(len(G_list)) def eval_acc_planar_graph(G_list): count = 0 for gg in G_list: if is_planar_graph(gg): count += 1 return count / float(len(G_list)) def is_planar_graph(G): return nx.is_connected(G) and nx.check_planarity(G)[0] def is_lobster_graph(G): """ Check a given graph is a lobster graph or not Removing leaf nodes twice: lobster -> caterpillar -> path """ ### Check if G is a tree if nx.is_tree(G): G = G.copy() ### Check if G is a path after removing leaves twice leaves = [n for n, d in G.degree() if d == 1] G.remove_nodes_from(leaves) leaves = [n for n, d in G.degree() if d == 1] G.remove_nodes_from(leaves) num_nodes = len(G.nodes()) num_degree_one = [d for n, d in G.degree() if d == 1] num_degree_two = [d for n, d in G.degree() if d == 2] if sum(num_degree_one) == 2 and sum(num_degree_two) == 2 * (num_nodes - 2): return True elif sum(num_degree_one) == 0 and sum(num_degree_two) == 0: return True else: return False else: return False def is_grid_graph(G): """ Check if the graph is grid, by comparing with all the real grids with the same node count """ all_grid_file = f"data/all_grids.pt" if os.path.isfile(all_grid_file): all_grids = torch.load(all_grid_file) else: all_grids = {} for i in range(2, 20): for j in range(2, 20): G_grid = nx.grid_2d_graph(i, j) n_nodes = f"{len(G_grid.nodes())}" all_grids[n_nodes] = all_grids.get(n_nodes, []) + [G_grid] torch.save(all_grids, all_grid_file) n_nodes = f"{len(G.nodes())}" if n_nodes in all_grids: for G_grid in all_grids[n_nodes]: if nx.faster_could_be_isomorphic(G, G_grid): if nx.is_isomorphic(G, G_grid): return True return False else: return False # def is_sbm_graph(G, p_intra=0.3, p_inter=0.005, strict=True, refinement_steps=1000): # """ # Check if how closely given graph matches a SBM with given probabilites by computing mean probability of Wald test statistic for each recovered parameter # """ # adj = nx.adjacency_matrix(G).toarray() # idx = adj.nonzero() # g = gt.Graph() # g.add_edge_list(np.transpose(idx)) # try: # state = gt.minimize_blockmodel_dl(g) # except ValueError: # if strict: # return False # else: # return 0.0 # # Refine using merge-split MCMC # for i in range(refinement_steps): # state.multiflip_mcmc_sweep(beta=np.inf, niter=10) # b = state.get_blocks() # b = gt.contiguous_map(state.get_blocks()) # state = state.copy(b=b) # e = state.get_matrix() # n_blocks = state.get_nonempty_B() # node_counts = state.get_nr().get_array()[:n_blocks] # edge_counts = e.todense()[:n_blocks, :n_blocks] # if strict: # if (node_counts > 40).sum() > 0 or (node_counts < 20).sum() > 0 or n_blocks > 5 or n_blocks < 2: # return False # max_intra_edges = node_counts * (node_counts - 1) # est_p_intra = np.diagonal(edge_counts) / (max_intra_edges + 1e-6) # max_inter_edges = node_counts.reshape((-1, 1)) @ node_counts.reshape((1, -1)) # np.fill_diagonal(edge_counts, 0) # est_p_inter = edge_counts / (max_inter_edges + 1e-6) # W_p_intra = (est_p_intra - p_intra) ** 2 / (est_p_intra * (1 - est_p_intra) + 1e-6) # W_p_inter = (est_p_inter - p_inter) ** 2 / (est_p_inter * (1 - est_p_inter) + 1e-6) # W = W_p_inter.copy() # np.fill_diagonal(W, W_p_intra) # p = 1 - chi2.cdf(abs(W), 1) # p = p.mean() # if strict: # return p > 0.9 # p value < 10 % # else: # return p def eval_fraction_isomorphic(fake_graphs, train_graphs): count = 0 for fake_g in fake_graphs: for train_g in train_graphs: if nx.faster_could_be_isomorphic(fake_g, train_g): if nx.is_isomorphic(fake_g, train_g): count += 1 break return count / float(len(fake_graphs)) def eval_fraction_unique(fake_graphs, precise=False): count_non_unique = 0 fake_evaluated = [] for fake_g in fake_graphs: unique = True if not fake_g.number_of_nodes() == 0: for fake_old in fake_evaluated: if precise: if nx.faster_could_be_isomorphic(fake_g, fake_old): if nx.is_isomorphic(fake_g, fake_old): count_non_unique += 1 unique = False break else: if nx.faster_could_be_isomorphic(fake_g, fake_old): if nx.could_be_isomorphic(fake_g, fake_old): count_non_unique += 1 unique = False break if unique: fake_evaluated.append(fake_g) frac_unique = (float(len(fake_graphs)) - count_non_unique) / float( len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs return frac_unique def eval_fraction_unique_non_isomorphic_valid(fake_graphs, train_graphs, validity_func=(lambda x: True)): count_valid = 0 count_isomorphic = 0 count_non_unique = 0 fake_evaluated = [] for fake_g in fake_graphs: unique = True for fake_old in fake_evaluated: if nx.faster_could_be_isomorphic(fake_g, fake_old): if nx.is_isomorphic(fake_g, fake_old): count_non_unique += 1 unique = False break if unique: fake_evaluated.append(fake_g) non_isomorphic = True for train_g in train_graphs: if nx.faster_could_be_isomorphic(fake_g, train_g): if nx.is_isomorphic(fake_g, train_g): count_isomorphic += 1 non_isomorphic = False break if non_isomorphic: if validity_func(fake_g): count_valid += 1 frac_unique = (float(len(fake_graphs)) - count_non_unique) / float( len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs frac_unique_non_isomorphic = (float(len(fake_graphs)) - count_non_unique - count_isomorphic) / float( len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs that are not in the training set frac_unique_non_isomorphic_valid = count_valid / float( len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs that are not in the training set and are valid return frac_unique, frac_unique_non_isomorphic, frac_unique_non_isomorphic_valid class SpectreSamplingMetrics(nn.Module): def __init__(self, data_loaders, compute_emd, metrics_list): super().__init__() self.train_graphs = self.loader_to_nx(data_loaders['train']) self.val_graphs = self.loader_to_nx(data_loaders['val']) self.test_graphs = self.loader_to_nx(data_loaders['test']) self.num_graphs_test = len(self.test_graphs) self.num_graphs_val = len(self.val_graphs) self.compute_emd = compute_emd self.metrics_list = metrics_list def loader_to_nx(self, loader): networkx_graphs = [] for i, batch in enumerate(loader): data_list = batch.to_data_list() for j, data in enumerate(data_list): networkx_graphs.append(to_networkx(data, node_attrs=None, edge_attrs=None, to_undirected=True, remove_self_loops=True)) return networkx_graphs def forward(self, generated_graphs: list, local_rank, test=False): reference_graphs = self.test_graphs if test else self.val_graphs if local_rank == 0: print(f"Computing sampling metrics between {len(generated_graphs)} generated graphs and {len(reference_graphs)}" f" test graphs -- emd computation: {self.compute_emd}") networkx_graphs = [] adjacency_matrices = [] if local_rank == 0: print("Building networkx graphs...") for graph in generated_graphs: node_types, edge_types = graph A = edge_types.bool().cpu().numpy() adjacency_matrices.append(A) nx_graph = nx.from_numpy_array(A) networkx_graphs.append(nx_graph) np.savez('generated_adjs.npz', *adjacency_matrices) to_log = {} if 'degree' in self.metrics_list: if local_rank == 0: print("Computing degree stats..") degree = degree_stats(reference_graphs, networkx_graphs, is_parallel=True, compute_emd=self.compute_emd) to_log['degree'] = degree if wandb.run: wandb.run.summary['degree'] = degree # val_eigvals = [graph["eigval"][1:self.k + 1].cpu().detach().numpy() for graph in self.val] # train_eigvals = [graph["eigval"][1:self.k + 1].cpu().detach().numpy() for graph in self.train] # eigval_stats(eig_ref_list, eig_pred_list, max_eig=20, is_parallel=True, compute_emd=False) # spectral_filter_stats(eigvec_ref_list, eigval_ref_list, eigvec_pred_list, eigval_pred_list, is_parallel=False, # compute_emd=False) # This is the one called wavelet if 'spectre' in self.metrics_list: if local_rank == 0: print("Computing spectre stats...") spectre = spectral_stats(reference_graphs, networkx_graphs, is_parallel=True, n_eigvals=-1, compute_emd=self.compute_emd) to_log['spectre'] = spectre if wandb.run: wandb.run.summary['spectre'] = spectre if 'clustering' in self.metrics_list: if local_rank == 0: print("Computing clustering stats...") clustering = clustering_stats(reference_graphs, networkx_graphs, bins=100, is_parallel=True, compute_emd=self.compute_emd) to_log['clustering'] = clustering if wandb.run: wandb.run.summary['clustering'] = clustering if 'motif' in self.metrics_list: if local_rank == 0: print("Computing motif stats") motif = motif_stats(reference_graphs, networkx_graphs, motif_type='4cycle', ground_truth_match=None, bins=100, compute_emd=self.compute_emd) to_log['motif'] = motif if wandb.run: wandb.run.summary['motif'] = motif if 'orbit' in self.metrics_list: if local_rank == 0: print("Computing orbit stats...") orbit = orbit_stats_all(reference_graphs, networkx_graphs, compute_emd=self.compute_emd) to_log['orbit'] = orbit if wandb.run: wandb.run.summary['orbit'] = orbit if 'sbm' in self.metrics_list: if local_rank == 0: print("Computing accuracy...") acc = eval_acc_sbm_graph(networkx_graphs, refinement_steps=100, strict=True) to_log['sbm_acc'] = acc if wandb.run: wandb.run.summary['sbmacc'] = acc if 'planar' in self.metrics_list: if local_rank ==0: print('Computing planar accuracy...') planar_acc = eval_acc_planar_graph(networkx_graphs) to_log['planar_acc'] = planar_acc if wandb.run: wandb.run.summary['planar_acc'] = planar_acc if 'sbm' or 'planar' in self.metrics_list: if local_rank == 0: print("Computing all fractions...") frac_unique, frac_unique_non_isomorphic, fraction_unique_non_isomorphic_valid = eval_fraction_unique_non_isomorphic_valid( networkx_graphs, self.train_graphs, is_sbm_graph if 'sbm' in self.metrics_list else is_planar_graph) frac_non_isomorphic = 1.0 - eval_fraction_isomorphic(networkx_graphs, self.train_graphs) to_log.update({'sampling/frac_unique': frac_unique, 'sampling/frac_unique_non_iso': frac_unique_non_isomorphic, 'sampling/frac_unic_non_iso_valid': fraction_unique_non_isomorphic_valid, 'sampling/frac_non_iso': frac_non_isomorphic}) if local_rank == 0: print("Sampling statistics", to_log) if wandb.run: wandb.log(to_log, commit=False) def reset(self): pass def loader_to_nx(loader): networkx_graphs = {} for i, batch in enumerate(loader): data_list = batch.to_data_list() for j, data in enumerate(data_list): networkx_graphs[data.prompt_id.squeeze(0).item()] = [to_networkx(data, node_attrs=None, edge_attrs=None, to_undirected=True, remove_self_loops=True)] return networkx_graphs def compute_metrics(generated_graphs, referenced_graphs): networkx_graphs = defaultdict(list) adjacency_matrices = defaultdict(list) for key in generated_graphs: for graph in generated_graphs[key]: node_types, edge_types = graph A = edge_types.bool().cpu().numpy() nx_graph = nx.from_numpy_array(A) networkx_graphs[key].append(nx_graph) adjacency_matrices[key].append(A) new_referenced_graphs = [] for key in referenced_graphs: new_referenced_graphs.extend(referenced_graphs[key]) referenced_graphs = new_referenced_graphs nx_graphs = [] for key in networkx_graphs: nx_graphs.extend(networkx_graphs[key]) return nx_graphs class Comm20SamplingMetrics(SpectreSamplingMetrics): def __init__(self, data_loaders): super().__init__(data_loaders=data_loaders, compute_emd=True, metrics_list=['degree', 'clustering', 'orbit']) class PlanarSamplingMetrics(SpectreSamplingMetrics): def __init__(self, data_loaders): super().__init__(data_loaders=data_loaders, compute_emd=False, metrics_list=['degree', 'clustering', 'orbit', 'spectre', 'planar']) class SBMSamplingMetrics(SpectreSamplingMetrics): def __init__(self, data_loaders): super().__init__(data_loaders=data_loaders, compute_emd=False, metrics_list=['degree', 'clustering', 'orbit', 'spectre', 'sbm']) class CrossDomainSamplingMetrics(SpectreSamplingMetrics): def __init__(self, data_loaders): super().__init__(data_loaders=data_loaders, compute_emd=False, metrics_list=['degree', 'clustering', 'orbit', 'spectre'])