Spaces:
Runtime error
Runtime error
############################################################################### | |
# | |
# Adapted from https://github.com/lrjconan/GRAN/ which in turn is adapted from https://github.com/JiaxuanYou/graph-generation | |
# | |
############################################################################### | |
import pyemd | |
import numpy as np | |
import concurrent.futures | |
from functools import partial | |
from scipy.linalg import toeplitz | |
def emd(x, y, distance_scaling=1.0): | |
support_size = max(len(x), len(y)) | |
d_mat = toeplitz(range(support_size)).astype(float) | |
distance_mat = d_mat / distance_scaling | |
# convert histogram values x and y to float, and make them equal len | |
x = x.astype(float) | |
y = y.astype(float) | |
if len(x) < len(y): | |
x = np.hstack((x, [0.0] * (support_size - len(x)))) | |
elif len(y) < len(x): | |
y = np.hstack((y, [0.0] * (support_size - len(y)))) | |
emd = pyemd.emd(x, y, distance_mat) | |
return emd | |
def l2(x, y): | |
dist = np.linalg.norm(x - y, 2) | |
return dist | |
def emd(x, y, sigma=1.0, distance_scaling=1.0): | |
''' EMD | |
Args: | |
x, y: 1D pmf of two distributions with the same support | |
sigma: standard deviation | |
''' | |
support_size = max(len(x), len(y)) | |
d_mat = toeplitz(range(support_size)).astype(float) | |
distance_mat = d_mat / distance_scaling | |
# convert histogram values x and y to float, and make them equal len | |
x = x.astype(float) | |
y = y.astype(float) | |
if len(x) < len(y): | |
x = np.hstack((x, [0.0] * (support_size - len(x)))) | |
elif len(y) < len(x): | |
y = np.hstack((y, [0.0] * (support_size - len(y)))) | |
return np.abs(pyemd.emd(x, y, distance_mat)) | |
def gaussian_emd(x, y, sigma=1.0, distance_scaling=1.0): | |
''' Gaussian kernel with squared distance in exponential term replaced by EMD | |
Args: | |
x, y: 1D pmf of two distributions with the same support | |
sigma: standard deviation | |
''' | |
support_size = max(len(x), len(y)) | |
d_mat = toeplitz(range(support_size)).astype(float) | |
distance_mat = d_mat / distance_scaling | |
# convert histogram values x and y to float, and make them equal len | |
x = x.astype(float) | |
y = y.astype(float) | |
if len(x) < len(y): | |
x = np.hstack((x, [0.0] * (support_size - len(x)))) | |
elif len(y) < len(x): | |
y = np.hstack((y, [0.0] * (support_size - len(y)))) | |
emd = pyemd.emd(x, y, distance_mat) | |
return np.exp(-emd * emd / (2 * sigma * sigma)) | |
def gaussian(x, y, sigma=1.0): | |
support_size = max(len(x), len(y)) | |
# convert histogram values x and y to float, and make them equal len | |
x = x.astype(float) | |
y = y.astype(float) | |
if len(x) < len(y): | |
x = np.hstack((x, [0.0] * (support_size - len(x)))) | |
elif len(y) < len(x): | |
y = np.hstack((y, [0.0] * (support_size - len(y)))) | |
dist = np.linalg.norm(x - y, 2) | |
return np.exp(-dist * dist / (2 * sigma * sigma)) | |
def gaussian_tv(x, y, sigma=1.0): | |
support_size = max(len(x), len(y)) | |
# convert histogram values x and y to float, and make them equal len | |
x = x.astype(float) | |
y = y.astype(float) | |
if len(x) < len(y): | |
x = np.hstack((x, [0.0] * (support_size - len(x)))) | |
elif len(y) < len(x): | |
y = np.hstack((y, [0.0] * (support_size - len(y)))) | |
dist = np.abs(x - y).sum() / 2.0 | |
return np.exp(-dist * dist / (2 * sigma * sigma)) | |
def kernel_parallel_unpacked(x, samples2, kernel): | |
d = 0 | |
for s2 in samples2: | |
d += kernel(x, s2) | |
return d | |
def kernel_parallel_worker(t): | |
return kernel_parallel_unpacked(*t) | |
def disc(samples1, samples2, kernel, is_parallel=True, *args, **kwargs): | |
''' Discrepancy between 2 samples ''' | |
d = 0 | |
if not is_parallel: | |
for s1 in samples1: | |
for s2 in samples2: | |
d += kernel(s1, s2, *args, **kwargs) | |
else: | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
for dist in executor.map(kernel_parallel_worker, [ | |
(s1, samples2, partial(kernel, *args, **kwargs)) for s1 in samples1 | |
]): | |
d += dist | |
if len(samples1) * len(samples2) > 0: | |
d /= len(samples1) * len(samples2) | |
else: | |
d = 1e+6 | |
return d | |
def compute_mmd(samples1, samples2, kernel, is_hist=True, *args, **kwargs): | |
''' MMD between two samples ''' | |
# normalize histograms into pmf | |
if is_hist: | |
samples1 = [s1 / (np.sum(s1) + 1e-6) for s1 in samples1] | |
samples2 = [s2 / (np.sum(s2) + 1e-6) for s2 in samples2] | |
return disc(samples1, samples1, kernel, *args, **kwargs) + disc(samples2, samples2, kernel, *args, **kwargs) - \ | |
2 * disc(samples1, samples2, kernel, *args, **kwargs) | |
def compute_emd(samples1, samples2, kernel, is_hist=True, *args, **kwargs): | |
''' EMD between average of two samples ''' | |
# normalize histograms into pmf | |
if is_hist: | |
samples1 = [np.mean(samples1)] | |
samples2 = [np.mean(samples2)] | |
return disc(samples1, samples2, kernel, *args, | |
**kwargs), [samples1[0], samples2[0]] | |