Spaces:
Runtime error
Runtime error
import torch | |
from src import utils | |
class ExtraMolecularFeatures: | |
def __init__(self, dataset_infos): | |
self.charge = ChargeFeature(remove_h=dataset_infos.remove_h, valencies=dataset_infos.valencies) | |
self.valency = ValencyFeature() | |
self.weight = WeightFeature(max_weight=dataset_infos.max_weight, atom_weights=dataset_infos.atom_weights) | |
def __call__(self, noisy_data): | |
charge = self.charge(noisy_data).unsqueeze(-1) # (bs, n, 1) | |
valency = self.valency(noisy_data).unsqueeze(-1) # (bs, n, 1) | |
weight = self.weight(noisy_data) # (bs, 1) | |
extra_edge_attr = torch.zeros((*noisy_data['E_t'].shape[:-1], 0)).type_as(noisy_data['E_t']) | |
return utils.PlaceHolder(X=torch.cat((charge, valency), dim=-1), E=extra_edge_attr, y=weight) | |
class ChargeFeature: | |
def __init__(self, remove_h, valencies): | |
self.remove_h = remove_h | |
self.valencies = valencies | |
def __call__(self, noisy_data): | |
bond_orders = torch.tensor([0, 1, 2, 3, 1.5], device=noisy_data['E_t'].device).reshape(1, 1, 1, -1) | |
weighted_E = noisy_data['E_t'] * bond_orders # (bs, n, n, de) | |
current_valencies = weighted_E.argmax(dim=-1).sum(dim=-1) # (bs, n) | |
valencies = torch.tensor(self.valencies, device=noisy_data['X_t'].device).reshape(1, 1, -1) | |
X = noisy_data['X_t'] * valencies # (bs, n, dx) | |
normal_valencies = torch.argmax(X, dim=-1) # (bs, n) | |
return (normal_valencies - current_valencies).type_as(noisy_data['X_t']) | |
class ValencyFeature: | |
def __init__(self): | |
pass | |
def __call__(self, noisy_data): | |
orders = torch.tensor([0, 1, 2, 3, 1.5], device=noisy_data['E_t'].device).reshape(1, 1, 1, -1) | |
E = noisy_data['E_t'] * orders # (bs, n, n, de) | |
valencies = E.argmax(dim=-1).sum(dim=-1) # (bs, n) | |
return valencies.type_as(noisy_data['X_t']) | |
class WeightFeature: | |
def __init__(self, max_weight, atom_weights): | |
self.max_weight = max_weight | |
self.atom_weight_list = torch.tensor(list(atom_weights.values())) | |
def __call__(self, noisy_data): | |
X = torch.argmax(noisy_data['X_t'], dim=-1) # (bs, n) | |
X_weights = self.atom_weight_list.to(X.device)[X] # (bs, n) | |
return X_weights.sum(dim=-1).unsqueeze(-1).type_as(noisy_data['X_t']) / self.max_weight # (bs, 1) | |