File size: 11,050 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
bc5c298
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5c298
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5c298
 
 
 
 
 
 
 
bfd34aa
bc5c298
 
 
 
 
 
 
 
 
 
 
 
6b59850
bc5c298
 
 
 
 
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm

from models.transformer_model import GraphTransformer
from diffusion.noise_schedule import DiscreteUniformTransition, PredefinedNoiseScheduleDiscrete
from diffusion import diffusion_utils
import utils
import networkx as nx
from sentence_transformers import SentenceTransformer
import pytorch_lightning as pl
from transformers import BertTokenizer, BertForSequenceClassification


class LGGMText2Graph_Demo(pl.LightningModule):
    def __init__(self, cfg, input_dims, output_dims, cond_dims, cond_emb, \
                 nodes_dist, node_types, edge_types, extra_features, data_loaders):
        super().__init__()

        nodes_dist = nodes_dist

        self.cfg = cfg
        self.T = cfg.model.diffusion_steps

        self.Xdim = input_dims['X']
        self.Edim = input_dims['E']
        self.ydim = input_dims['y']
        self.Xdim_output = output_dims['X']
        self.Edim_output = output_dims['E']
        self.ydim_output = output_dims['y']
        self.node_dist = nodes_dist


        self.extra_features = extra_features

        self.model = GraphTransformer(n_layers=cfg.model.n_layers,
                                      input_dims=input_dims,
                                      hidden_mlp_dims=cfg.model.hidden_mlp_dims,
                                      hidden_dims=cfg.model.hidden_dims,
                                      output_dims=output_dims,
                                      cond_dims = cond_dims,
                                      act_fn_in=nn.ReLU(),
                                      act_fn_out=nn.ReLU()).to(self.device)
        

        self.noise_schedule = PredefinedNoiseScheduleDiscrete(cfg.model.diffusion_noise_schedule,
                                                              timesteps=cfg.model.diffusion_steps).to(self.device)

        self.transition_model = DiscreteUniformTransition(x_classes=self.Xdim_output, e_classes=self.Edim_output,
                                                            y_classes=self.ydim_output)
        x_limit = torch.ones(self.Xdim_output) / self.Xdim_output
        e_limit = torch.ones(self.Edim_output) / self.Edim_output
        y_limit = torch.ones(self.ydim_output) / self.ydim_output
        
        self.limit_dist = utils.PlaceHolder(X=x_limit, E=e_limit, y=y_limit)
        

    def generate_basic(self, text, num_nodes) -> None:
        print(num_nodes)
        prompt_emb = torch.tensor(self.text_encoder.encode([text])).to(self.device)
        samples = self.sample_batch(5, cond_emb = prompt_emb, num_nodes = num_nodes)

        nx_graphs = []
        for graph in samples:
            node_types, edge_types = graph
            A = edge_types.bool().cpu().numpy()

            nx_graph = nx.from_numpy_array(A)
            nx_graphs.append(nx_graph)
        
        return nx_graphs

    def generate_pretrained(self, text, num_nodes) -> None:
        encoded_input = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
        encoded_input = {key: val.to(self.text_encoder.device) for key, val in encoded_input.items()}

        # Get the model output
        with torch.no_grad():
            prompt_emb = self.text_encoder(**encoded_input).hidden_states[-1][:, 0]

        samples = self.sample_batch(3, cond_emb = prompt_emb.to(self.device), num_nodes = num_nodes)

        nx_graphs = []
        for graph in samples:
            node_types, edge_types = graph
            A = edge_types.bool().cpu().numpy()

            nx_graph = nx.from_numpy_array(A)
            nx_graphs.append(nx_graph)
        
        return nx_graphs

    def init_prompt_encoder_basic(self):
        self.text_encoder = SentenceTransformer("all-MiniLM-L6-v2")
    
    def init_prompt_encoder_pretrained(self):
        model_name = f"./checkpoint-900"  # or "bert-base-uncased" if starting from the base model
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        self.text_encoder = BertForSequenceClassification.from_pretrained(model_name, num_labels=8, output_hidden_states=True, device_map = 'cpu')


    @torch.no_grad()
    def sample_batch(self, batch_size: int,  cond_emb = None, num_nodes = None):
        """
        :param batch_id: int
        :param batch_size: int
        :param num_nodes: int, <int>tensor (batch_size) (optional) for specifying number of nodes
        :param save_final: int: number of predictions to save to file
        :param keep_chain: int: number of chains to save to file
        :param keep_chain_steps: number of timesteps to save for each chain
        :return: molecule_list. Each element of this list is a tuple (atom_types, charges, positions)
        """
        if num_nodes is None:
            n_nodes = self.node_dist.sample_n(batch_size, self.device)
        elif type(num_nodes) == int:
            n_nodes = num_nodes * torch.ones(batch_size, device=self.device, dtype=torch.int)
        
        n_max = torch.max(n_nodes).item()
        # Build the masks
        arange = torch.arange(n_max, device=self.device).unsqueeze(0).expand(batch_size, -1)
        node_mask = arange < n_nodes.unsqueeze(1)
        # Sample noise  -- z has size (n_samples, n_nodes, n_features)
        
        z_T = diffusion_utils.sample_discrete_feature_noise(limit_dist=self.limit_dist, node_mask=node_mask, transition=self.cfg.model.transition)
        X, E, y = z_T.X, z_T.E, z_T.y


        # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
        for s_int in tqdm(reversed(range(0, self.T))):
            s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
            t_array = s_array + 1
            s_norm = s_array / self.T
            t_norm = t_array / self.T

            # Sample z_s
            sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask, cond_emb)
            X, E, y = sampled_s.X, sampled_s.E, sampled_s.y

        # Sample
        sampled_s = sampled_s.mask(node_mask, collapse=True)
        X, E, y = sampled_s.X, sampled_s.E, sampled_s.y


        graph_list = []
        for i in range(batch_size):
            n = n_nodes[i]
            node_types = X[i, :n].cpu()
            edge_types = E[i, :n, :n].cpu()
            graph_list.append([node_types, edge_types])

        return graph_list

    def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask, cond_emb):
        """Samples from zs ~ p(zs | zt). Only used during sampling.
           if last_step, return the graph prediction as well"""
        bs, n, dxs = X_t.shape
        beta_t = self.noise_schedule(t_normalized=t)  # (bs, 1)
        alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
        alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)

        
        # Retrieve transitions matrix
        Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, self.device)
        Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, self.device)
        Qt = self.transition_model.get_Qt(beta_t, self.device)

        noisy_data = {'X_t': X_t, 'E_t': E_t, 'y_t': y_t, 't': t, 'node_mask': node_mask, 'cond_emb': cond_emb.repeat(X_t.shape[0], 1)}
        extra_data = self.compute_extra_data(noisy_data)
        pred = self.forward(noisy_data, extra_data, node_mask)

        # Normalize predictions
        pred_X = F.softmax(pred.X, dim=-1)               # bs, n, d0
        pred_E = F.softmax(pred.E, dim=-1)               # bs, n, n, d0

        p_s_and_t_given_0_X = diffusion_utils.compute_batched_over0_posterior_distribution(X_t=X_t,
                                                                                           Qt=Qt.X,
                                                                                           Qsb=Qsb.X,
                                                                                           Qtb=Qtb.X)

        p_s_and_t_given_0_E = diffusion_utils.compute_batched_over0_posterior_distribution(X_t=E_t,
                                                                                           Qt=Qt.E,
                                                                                           Qsb=Qsb.E,
                                                                                           Qtb=Qtb.E)
        # Dim of these two tensors: bs, N, d0, d_t-1
        weighted_X = pred_X.unsqueeze(-1) * p_s_and_t_given_0_X         # bs, n, d0, d_t-1
        unnormalized_prob_X = weighted_X.sum(dim=2)                     # bs, n, d_t-1
        unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
        prob_X = unnormalized_prob_X / torch.sum(unnormalized_prob_X, dim=-1, keepdim=True)  # bs, n, d_t-1

        pred_E = pred_E.reshape((bs, -1, pred_E.shape[-1]))
        weighted_E = pred_E.unsqueeze(-1) * p_s_and_t_given_0_E        # bs, N, d0, d_t-1
        unnormalized_prob_E = weighted_E.sum(dim=-2)
        unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5
        prob_E = unnormalized_prob_E / torch.sum(unnormalized_prob_E, dim=-1, keepdim=True)
        prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])

        assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-4).all()
        assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-4).all()


        sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask)


        X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float()
        E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float()

        assert (E_s == torch.transpose(E_s, 1, 2)).all()
        assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)

        out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=torch.zeros(y_t.shape[0], 0))

        return out_one_hot.mask(node_mask).type_as(y_t)

    def compute_extra_data(self, noisy_data):
        """ At every training step (after adding noise) and step in sampling, compute extra information and append to
            the network input. """

        extra_features = self.extra_features(noisy_data)

        # print(extra_features.X.shape, extra_features.E.shape, extra_features.y.shape)
        extra_X = extra_features.X
        extra_E = extra_features.E
        extra_y = extra_features.y

        t = noisy_data['t']
        extra_y = torch.cat((extra_y, t), dim=1)

        return utils.PlaceHolder(X=extra_X, E=extra_E, y=extra_y)

    def forward(self, noisy_data, extra_data, node_mask):
        # print(noisy_data['cond_emb'].sum())
        B = noisy_data['cond_emb'].unsqueeze(1).unsqueeze(2).expand(-1, noisy_data['X_t'].shape[1], noisy_data['X_t'].shape[1], -1).to(self.device)
        A = noisy_data['cond_emb'].unsqueeze(1).expand(-1, noisy_data['X_t'].shape[1], -1).to(self.device)

        X = torch.cat((noisy_data['X_t'], extra_data.X, A), dim=2).float()
        E = torch.cat((noisy_data['E_t'], extra_data.E, B), dim=3).float()
        y = torch.hstack((noisy_data['y_t'], extra_data.y)).float()

        return self.model(X, E, y, node_mask)