Spaces:
Runtime error
Runtime error
File size: 36,091 Bytes
6b59850 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
###############################################################################
#
# Adapted from https://github.com/lrjconan/GRAN/ which in turn is adapted from https://github.com/JiaxuanYou/graph-generation
#
###############################################################################
# import graph_tool.all as gt
##Navigate to the ./util/orca directory and compile orca.cpp
# g++ -O2 -std=c++11 -o orca orca.cpp
import os
import copy
import torch
import torch.nn as nn
import numpy as np
import networkx as nx
import subprocess as sp
import concurrent.futures
import pygsp as pg
import secrets
from string import ascii_uppercase, digits
from datetime import datetime
from scipy.linalg import eigvalsh
from scipy.stats import chi2
from analysis.dist_helper import compute_mmd, gaussian_emd, gaussian, emd, gaussian_tv, disc
from torch_geometric.utils import to_networkx
import wandb
from collections import defaultdict
PRINT_TIME = False
__all__ = ['degree_stats', 'clustering_stats', 'orbit_stats_all', 'spectral_stats', 'eval_acc_lobster_graph']
def degree_worker(G):
return np.array(nx.degree_histogram(G))
def degree_stats(graph_ref_list, graph_pred_list, is_parallel=True, compute_emd=False):
''' Compute the distance between the degree distributions of two unordered sets of graphs.
Args:
graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated
'''
sample_ref = []
sample_pred = []
# in case an empty graph is generated
graph_pred_list_remove_empty = [
G for G in graph_pred_list if not G.number_of_nodes() == 0
]
prev = datetime.now()
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for deg_hist in executor.map(degree_worker, graph_ref_list):
sample_ref.append(deg_hist)
with concurrent.futures.ThreadPoolExecutor() as executor:
for deg_hist in executor.map(degree_worker, graph_pred_list_remove_empty):
sample_pred.append(deg_hist)
else:
for i in range(len(graph_ref_list)):
degree_temp = np.array(nx.degree_histogram(graph_ref_list[i]))
sample_ref.append(degree_temp)
for i in range(len(graph_pred_list_remove_empty)):
degree_temp = np.array(
nx.degree_histogram(graph_pred_list_remove_empty[i]))
sample_pred.append(degree_temp)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
if compute_emd:
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
else:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian)
elapsed = datetime.now() - prev
if PRINT_TIME:
print('Time computing degree mmd: ', elapsed)
return mmd_dist
###############################################################################
def spectral_worker(G, n_eigvals=-1):
# eigs = nx.laplacian_spectrum(G)
try:
eigs = eigvalsh(nx.normalized_laplacian_matrix(G).todense())
except:
eigs = np.zeros(G.number_of_nodes())
if n_eigvals > 0:
eigs = eigs[1:n_eigvals + 1]
spectral_pmf, _ = np.histogram(eigs, bins=200, range=(-1e-5, 2), density=False)
spectral_pmf = spectral_pmf / spectral_pmf.sum()
return spectral_pmf
def get_spectral_pmf(eigs, max_eig):
spectral_pmf, _ = np.histogram(np.clip(eigs, 0, max_eig), bins=200, range=(-1e-5, max_eig), density=False)
spectral_pmf = spectral_pmf / spectral_pmf.sum()
return spectral_pmf
def eigval_stats(eig_ref_list, eig_pred_list, max_eig=20, is_parallel=True, compute_emd=False):
''' Compute the distance between the degree distributions of two unordered sets of graphs.
Args:
graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated
'''
sample_ref = []
sample_pred = []
prev = datetime.now()
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(get_spectral_pmf, eig_ref_list,
[max_eig for i in range(len(eig_ref_list))]):
sample_ref.append(spectral_density)
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(get_spectral_pmf, eig_pred_list,
[max_eig for i in range(len(eig_ref_list))]):
sample_pred.append(spectral_density)
else:
for i in range(len(eig_ref_list)):
spectral_temp = get_spectral_pmf(eig_ref_list[i])
sample_ref.append(spectral_temp)
for i in range(len(eig_pred_list)):
spectral_temp = get_spectral_pmf(eig_pred_list[i])
sample_pred.append(spectral_temp)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
if compute_emd:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
else:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian)
elapsed = datetime.now() - prev
if PRINT_TIME:
print('Time computing eig mmd: ', elapsed)
return mmd_dist
def eigh_worker(G):
L = nx.normalized_laplacian_matrix(G).todense()
try:
eigvals, eigvecs = np.linalg.eigh(L)
except:
eigvals = np.zeros(L[0, :].shape)
eigvecs = np.zeros(L.shape)
return (eigvals, eigvecs)
def compute_list_eigh(graph_list, is_parallel=False):
eigval_list = []
eigvec_list = []
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for e_U in executor.map(eigh_worker, graph_list):
eigval_list.append(e_U[0])
eigvec_list.append(e_U[1])
else:
for i in range(len(graph_list)):
e_U = eigh_worker(graph_list[i])
eigval_list.append(e_U[0])
eigvec_list.append(e_U[1])
return eigval_list, eigvec_list
def get_spectral_filter_worker(eigvec, eigval, filters, bound=1.4):
ges = filters.evaluate(eigval)
linop = []
for ge in ges:
linop.append(eigvec @ np.diag(ge) @ eigvec.T)
linop = np.array(linop)
norm_filt = np.sum(linop ** 2, axis=2)
hist_range = [0, bound]
hist = np.array([np.histogram(x, range=hist_range, bins=100)[0] for x in norm_filt]) # NOTE: change number of bins
return hist.flatten()
def spectral_filter_stats(eigvec_ref_list, eigval_ref_list, eigvec_pred_list, eigval_pred_list, is_parallel=False,
compute_emd=False):
''' Compute the distance between the eigvector sets.
Args:
graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated
'''
prev = datetime.now()
class DMG(object):
"""Dummy Normalized Graph"""
lmax = 2
n_filters = 12
filters = pg.filters.Abspline(DMG, n_filters)
bound = np.max(filters.evaluate(np.arange(0, 2, 0.01)))
sample_ref = []
sample_pred = []
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(get_spectral_filter_worker, eigvec_ref_list, eigval_ref_list,
[filters for i in range(len(eigval_ref_list))],
[bound for i in range(len(eigval_ref_list))]):
sample_ref.append(spectral_density)
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(get_spectral_filter_worker, eigvec_pred_list, eigval_pred_list,
[filters for i in range(len(eigval_ref_list))],
[bound for i in range(len(eigval_ref_list))]):
sample_pred.append(spectral_density)
else:
for i in range(len(eigval_ref_list)):
try:
spectral_temp = get_spectral_filter_worker(eigvec_ref_list[i], eigval_ref_list[i], filters, bound)
sample_ref.append(spectral_temp)
except:
pass
for i in range(len(eigval_pred_list)):
try:
spectral_temp = get_spectral_filter_worker(eigvec_pred_list[i], eigval_pred_list[i], filters, bound)
sample_pred.append(spectral_temp)
except:
pass
if compute_emd:
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
else:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv)
elapsed = datetime.now() - prev
if PRINT_TIME:
print('Time computing spectral filter stats: ', elapsed)
return mmd_dist
def spectral_stats(graph_ref_list, graph_pred_list, is_parallel=True, n_eigvals=-1, compute_emd=False):
''' Compute the distance between the degree distributions of two unordered sets of graphs.
Args:
graph_ref_list, graph_target_list: two lists of networkx graphs to be evaluated
'''
sample_ref = []
sample_pred = []
# in case an empty graph is generated
graph_pred_list_remove_empty = [
G for G in graph_pred_list if not G.number_of_nodes() == 0
]
prev = datetime.now()
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(spectral_worker, graph_ref_list, [n_eigvals for i in graph_ref_list]):
sample_ref.append(spectral_density)
with concurrent.futures.ThreadPoolExecutor() as executor:
for spectral_density in executor.map(spectral_worker, graph_pred_list_remove_empty,
[n_eigvals for i in graph_ref_list]):
sample_pred.append(spectral_density)
else:
for i in range(len(graph_ref_list)):
spectral_temp = spectral_worker(graph_ref_list[i], n_eigvals)
sample_ref.append(spectral_temp)
for i in range(len(graph_pred_list_remove_empty)):
spectral_temp = spectral_worker(graph_pred_list_remove_empty[i], n_eigvals)
sample_pred.append(spectral_temp)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
if compute_emd:
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd)
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd)
else:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv)
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian)
elapsed = datetime.now() - prev
if PRINT_TIME:
print('Time computing degree mmd: ', elapsed)
return mmd_dist
###############################################################################
def clustering_worker(param):
G, bins = param
clustering_coeffs_list = list(nx.clustering(G).values())
hist, _ = np.histogram(
clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False)
return hist
def clustering_stats(graph_ref_list,
graph_pred_list,
bins=100,
is_parallel=True, compute_emd=False):
sample_ref = []
sample_pred = []
graph_pred_list_remove_empty = [
G for G in graph_pred_list if not G.number_of_nodes() == 0
]
prev = datetime.now()
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for clustering_hist in executor.map(clustering_worker,
[(G, bins) for G in graph_ref_list]):
sample_ref.append(clustering_hist)
with concurrent.futures.ThreadPoolExecutor() as executor:
for clustering_hist in executor.map(
clustering_worker, [(G, bins) for G in graph_pred_list_remove_empty]):
sample_pred.append(clustering_hist)
# check non-zero elements in hist
# total = 0
# for i in range(len(sample_pred)):
# nz = np.nonzero(sample_pred[i])[0].shape[0]
# total += nz
# print(total)
else:
for i in range(len(graph_ref_list)):
clustering_coeffs_list = list(nx.clustering(graph_ref_list[i]).values())
hist, _ = np.histogram(
clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False)
sample_ref.append(hist)
for i in range(len(graph_pred_list_remove_empty)):
clustering_coeffs_list = list(
nx.clustering(graph_pred_list_remove_empty[i]).values())
hist, _ = np.histogram(
clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False)
sample_pred.append(hist)
if compute_emd:
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
# mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=emd, sigma=1.0 / 10)
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_emd, sigma=1.0 / 10, distance_scaling=bins)
else:
mmd_dist = compute_mmd(sample_ref, sample_pred, kernel=gaussian_tv, sigma=1.0 / 10)
elapsed = datetime.now() - prev
if PRINT_TIME:
print('Time computing clustering mmd: ', elapsed)
return mmd_dist
# maps motif/orbit name string to its corresponding list of indices from orca output
motif_to_indices = {
'3path': [1, 2],
'4cycle': [8],
}
COUNT_START_STR = 'orbit counts:'
def edge_list_reindexed(G):
idx = 0
id2idx = dict()
for u in G.nodes():
id2idx[str(u)] = idx
idx += 1
edges = []
for (u, v) in G.edges():
edges.append((id2idx[str(u)], id2idx[str(v)]))
return edges
def orca(graph):
# tmp_fname = f'analysis/orca/tmp_{"".join(secrets.choice(ascii_uppercase + digits) for i in range(8))}.txt'
tmp_fname = f'orca/tmp_{"".join(secrets.choice(ascii_uppercase + digits) for i in range(8))}.txt'
tmp_fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), tmp_fname)
# print(tmp_fname, flush=True)
f = open(tmp_fname, 'w')
f.write(
str(graph.number_of_nodes()) + ' ' + str(graph.number_of_edges()) + '\n')
for (u, v) in edge_list_reindexed(graph):
f.write(str(u) + ' ' + str(v) + '\n')
f.close()
output = sp.check_output(
[str(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'orca/orca')), 'node', '4', tmp_fname, 'std'])
output = output.decode('utf8').strip()
idx = output.find(COUNT_START_STR) + len(COUNT_START_STR) + 2
output = output[idx:]
node_orbit_counts = np.array([
list(map(int,
node_cnts.strip().split(' ')))
for node_cnts in output.strip('\n').split('\n')
])
try:
os.remove(tmp_fname)
except OSError:
pass
return node_orbit_counts
def motif_stats(graph_ref_list, graph_pred_list, motif_type='4cycle', ground_truth_match=None,
bins=100, compute_emd=False):
# graph motif counts (int for each graph)
# normalized by graph size
total_counts_ref = []
total_counts_pred = []
num_matches_ref = []
num_matches_pred = []
graph_pred_list_remove_empty = [G for G in graph_pred_list if not G.number_of_nodes() == 0]
indices = motif_to_indices[motif_type]
for G in graph_ref_list:
orbit_counts = orca(G)
motif_counts = np.sum(orbit_counts[:, indices], axis=1)
if ground_truth_match is not None:
match_cnt = 0
for elem in motif_counts:
if elem == ground_truth_match:
match_cnt += 1
num_matches_ref.append(match_cnt / G.number_of_nodes())
# hist, _ = np.histogram(
# motif_counts, bins=bins, density=False)
motif_temp = np.sum(motif_counts) / G.number_of_nodes()
total_counts_ref.append(motif_temp)
for G in graph_pred_list_remove_empty:
orbit_counts = orca(G)
motif_counts = np.sum(orbit_counts[:, indices], axis=1)
if ground_truth_match is not None:
match_cnt = 0
for elem in motif_counts:
if elem == ground_truth_match:
match_cnt += 1
num_matches_pred.append(match_cnt / G.number_of_nodes())
motif_temp = np.sum(motif_counts) / G.number_of_nodes()
total_counts_pred.append(motif_temp)
total_counts_ref = np.array(total_counts_ref)[:, None]
total_counts_pred = np.array(total_counts_pred)[:, None]
if compute_emd:
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
# mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=emd, is_hist=False)
mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False)
else:
mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False)
return mmd_dist
def orbit_stats_all(graph_ref_list, graph_pred_list, compute_emd=False):
total_counts_ref = []
total_counts_pred = []
graph_pred_list_remove_empty = [
G for G in graph_pred_list if not G.number_of_nodes() == 0
]
for G in graph_ref_list:
orbit_counts = orca(G)
orbit_counts_graph = np.sum(orbit_counts, axis=0) / G.number_of_nodes()
total_counts_ref.append(orbit_counts_graph)
for G in graph_pred_list:
orbit_counts = orca(G)
orbit_counts_graph = np.sum(orbit_counts, axis=0) / G.number_of_nodes()
total_counts_pred.append(orbit_counts_graph)
total_counts_ref = np.array(total_counts_ref)
total_counts_pred = np.array(total_counts_pred)
# mmd_dist = compute_mmd(
# total_counts_ref,
# total_counts_pred,
# kernel=gaussian,
# is_hist=False,
# sigma=30.0)
# mmd_dist = compute_mmd(
# total_counts_ref,
# total_counts_pred,
# kernel=gaussian_tv,
# is_hist=False,
# sigma=30.0)
if compute_emd:
# mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=emd, sigma=30.0)
# EMD option uses the same computation as GraphRNN, the alternative is MMD as computed by GRAN
mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian, is_hist=False, sigma=30.0)
else:
mmd_dist = compute_mmd(total_counts_ref, total_counts_pred, kernel=gaussian_tv, is_hist=False, sigma=30.0)
return mmd_dist
def eval_acc_lobster_graph(G_list):
G_list = [copy.deepcopy(gg) for gg in G_list]
count = 0
for gg in G_list:
if is_lobster_graph(gg):
count += 1
return count / float(len(G_list))
def eval_acc_tree_graph(G_list):
count = 0
for gg in G_list:
if nx.is_tree(gg):
count += 1
return count / float(len(G_list))
def eval_acc_grid_graph(G_list, grid_start=10, grid_end=20):
count = 0
for gg in G_list:
if is_grid_graph(gg):
count += 1
return count / float(len(G_list))
def eval_acc_sbm_graph(G_list, p_intra=0.3, p_inter=0.005, strict=True, refinement_steps=1000, is_parallel=True):
count = 0.0
if is_parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
for prob in executor.map(is_sbm_graph,
[gg for gg in G_list], [p_intra for i in range(len(G_list))],
[p_inter for i in range(len(G_list))],
[strict for i in range(len(G_list))],
[refinement_steps for i in range(len(G_list))]):
count += prob
else:
for gg in G_list:
count += is_sbm_graph(gg, p_intra=p_intra, p_inter=p_inter, strict=strict,
refinement_steps=refinement_steps)
return count / float(len(G_list))
def eval_acc_planar_graph(G_list):
count = 0
for gg in G_list:
if is_planar_graph(gg):
count += 1
return count / float(len(G_list))
def is_planar_graph(G):
return nx.is_connected(G) and nx.check_planarity(G)[0]
def is_lobster_graph(G):
"""
Check a given graph is a lobster graph or not
Removing leaf nodes twice:
lobster -> caterpillar -> path
"""
### Check if G is a tree
if nx.is_tree(G):
G = G.copy()
### Check if G is a path after removing leaves twice
leaves = [n for n, d in G.degree() if d == 1]
G.remove_nodes_from(leaves)
leaves = [n for n, d in G.degree() if d == 1]
G.remove_nodes_from(leaves)
num_nodes = len(G.nodes())
num_degree_one = [d for n, d in G.degree() if d == 1]
num_degree_two = [d for n, d in G.degree() if d == 2]
if sum(num_degree_one) == 2 and sum(num_degree_two) == 2 * (num_nodes - 2):
return True
elif sum(num_degree_one) == 0 and sum(num_degree_two) == 0:
return True
else:
return False
else:
return False
def is_grid_graph(G):
"""
Check if the graph is grid, by comparing with all the real grids with the same node count
"""
all_grid_file = f"data/all_grids.pt"
if os.path.isfile(all_grid_file):
all_grids = torch.load(all_grid_file)
else:
all_grids = {}
for i in range(2, 20):
for j in range(2, 20):
G_grid = nx.grid_2d_graph(i, j)
n_nodes = f"{len(G_grid.nodes())}"
all_grids[n_nodes] = all_grids.get(n_nodes, []) + [G_grid]
torch.save(all_grids, all_grid_file)
n_nodes = f"{len(G.nodes())}"
if n_nodes in all_grids:
for G_grid in all_grids[n_nodes]:
if nx.faster_could_be_isomorphic(G, G_grid):
if nx.is_isomorphic(G, G_grid):
return True
return False
else:
return False
# def is_sbm_graph(G, p_intra=0.3, p_inter=0.005, strict=True, refinement_steps=1000):
# """
# Check if how closely given graph matches a SBM with given probabilites by computing mean probability of Wald test statistic for each recovered parameter
# """
# adj = nx.adjacency_matrix(G).toarray()
# idx = adj.nonzero()
# g = gt.Graph()
# g.add_edge_list(np.transpose(idx))
# try:
# state = gt.minimize_blockmodel_dl(g)
# except ValueError:
# if strict:
# return False
# else:
# return 0.0
# # Refine using merge-split MCMC
# for i in range(refinement_steps):
# state.multiflip_mcmc_sweep(beta=np.inf, niter=10)
# b = state.get_blocks()
# b = gt.contiguous_map(state.get_blocks())
# state = state.copy(b=b)
# e = state.get_matrix()
# n_blocks = state.get_nonempty_B()
# node_counts = state.get_nr().get_array()[:n_blocks]
# edge_counts = e.todense()[:n_blocks, :n_blocks]
# if strict:
# if (node_counts > 40).sum() > 0 or (node_counts < 20).sum() > 0 or n_blocks > 5 or n_blocks < 2:
# return False
# max_intra_edges = node_counts * (node_counts - 1)
# est_p_intra = np.diagonal(edge_counts) / (max_intra_edges + 1e-6)
# max_inter_edges = node_counts.reshape((-1, 1)) @ node_counts.reshape((1, -1))
# np.fill_diagonal(edge_counts, 0)
# est_p_inter = edge_counts / (max_inter_edges + 1e-6)
# W_p_intra = (est_p_intra - p_intra) ** 2 / (est_p_intra * (1 - est_p_intra) + 1e-6)
# W_p_inter = (est_p_inter - p_inter) ** 2 / (est_p_inter * (1 - est_p_inter) + 1e-6)
# W = W_p_inter.copy()
# np.fill_diagonal(W, W_p_intra)
# p = 1 - chi2.cdf(abs(W), 1)
# p = p.mean()
# if strict:
# return p > 0.9 # p value < 10 %
# else:
# return p
def eval_fraction_isomorphic(fake_graphs, train_graphs):
count = 0
for fake_g in fake_graphs:
for train_g in train_graphs:
if nx.faster_could_be_isomorphic(fake_g, train_g):
if nx.is_isomorphic(fake_g, train_g):
count += 1
break
return count / float(len(fake_graphs))
def eval_fraction_unique(fake_graphs, precise=False):
count_non_unique = 0
fake_evaluated = []
for fake_g in fake_graphs:
unique = True
if not fake_g.number_of_nodes() == 0:
for fake_old in fake_evaluated:
if precise:
if nx.faster_could_be_isomorphic(fake_g, fake_old):
if nx.is_isomorphic(fake_g, fake_old):
count_non_unique += 1
unique = False
break
else:
if nx.faster_could_be_isomorphic(fake_g, fake_old):
if nx.could_be_isomorphic(fake_g, fake_old):
count_non_unique += 1
unique = False
break
if unique:
fake_evaluated.append(fake_g)
frac_unique = (float(len(fake_graphs)) - count_non_unique) / float(
len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs
return frac_unique
def eval_fraction_unique_non_isomorphic_valid(fake_graphs, train_graphs, validity_func=(lambda x: True)):
count_valid = 0
count_isomorphic = 0
count_non_unique = 0
fake_evaluated = []
for fake_g in fake_graphs:
unique = True
for fake_old in fake_evaluated:
if nx.faster_could_be_isomorphic(fake_g, fake_old):
if nx.is_isomorphic(fake_g, fake_old):
count_non_unique += 1
unique = False
break
if unique:
fake_evaluated.append(fake_g)
non_isomorphic = True
for train_g in train_graphs:
if nx.faster_could_be_isomorphic(fake_g, train_g):
if nx.is_isomorphic(fake_g, train_g):
count_isomorphic += 1
non_isomorphic = False
break
if non_isomorphic:
if validity_func(fake_g):
count_valid += 1
frac_unique = (float(len(fake_graphs)) - count_non_unique) / float(
len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs
frac_unique_non_isomorphic = (float(len(fake_graphs)) - count_non_unique - count_isomorphic) / float(
len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs that are not in the training set
frac_unique_non_isomorphic_valid = count_valid / float(
len(fake_graphs)) # Fraction of distinct isomorphism classes in the fake graphs that are not in the training set and are valid
return frac_unique, frac_unique_non_isomorphic, frac_unique_non_isomorphic_valid
class SpectreSamplingMetrics(nn.Module):
def __init__(self, data_loaders, compute_emd, metrics_list):
super().__init__()
self.train_graphs = self.loader_to_nx(data_loaders['train'])
self.val_graphs = self.loader_to_nx(data_loaders['val'])
self.test_graphs = self.loader_to_nx(data_loaders['test'])
self.num_graphs_test = len(self.test_graphs)
self.num_graphs_val = len(self.val_graphs)
self.compute_emd = compute_emd
self.metrics_list = metrics_list
def loader_to_nx(self, loader):
networkx_graphs = []
for i, batch in enumerate(loader):
data_list = batch.to_data_list()
for j, data in enumerate(data_list):
networkx_graphs.append(to_networkx(data, node_attrs=None, edge_attrs=None, to_undirected=True,
remove_self_loops=True))
return networkx_graphs
def forward(self, generated_graphs: list, local_rank, test=False):
reference_graphs = self.test_graphs if test else self.val_graphs
if local_rank == 0:
print(f"Computing sampling metrics between {len(generated_graphs)} generated graphs and {len(reference_graphs)}"
f" test graphs -- emd computation: {self.compute_emd}")
networkx_graphs = []
adjacency_matrices = []
if local_rank == 0:
print("Building networkx graphs...")
for graph in generated_graphs:
node_types, edge_types = graph
A = edge_types.bool().cpu().numpy()
adjacency_matrices.append(A)
nx_graph = nx.from_numpy_array(A)
networkx_graphs.append(nx_graph)
np.savez('generated_adjs.npz', *adjacency_matrices)
to_log = {}
if 'degree' in self.metrics_list:
if local_rank == 0:
print("Computing degree stats..")
degree = degree_stats(reference_graphs, networkx_graphs, is_parallel=True,
compute_emd=self.compute_emd)
to_log['degree'] = degree
if wandb.run:
wandb.run.summary['degree'] = degree
# val_eigvals = [graph["eigval"][1:self.k + 1].cpu().detach().numpy() for graph in self.val]
# train_eigvals = [graph["eigval"][1:self.k + 1].cpu().detach().numpy() for graph in self.train]
# eigval_stats(eig_ref_list, eig_pred_list, max_eig=20, is_parallel=True, compute_emd=False)
# spectral_filter_stats(eigvec_ref_list, eigval_ref_list, eigvec_pred_list, eigval_pred_list, is_parallel=False,
# compute_emd=False) # This is the one called wavelet
if 'spectre' in self.metrics_list:
if local_rank == 0:
print("Computing spectre stats...")
spectre = spectral_stats(reference_graphs, networkx_graphs, is_parallel=True, n_eigvals=-1,
compute_emd=self.compute_emd)
to_log['spectre'] = spectre
if wandb.run:
wandb.run.summary['spectre'] = spectre
if 'clustering' in self.metrics_list:
if local_rank == 0:
print("Computing clustering stats...")
clustering = clustering_stats(reference_graphs, networkx_graphs, bins=100, is_parallel=True,
compute_emd=self.compute_emd)
to_log['clustering'] = clustering
if wandb.run:
wandb.run.summary['clustering'] = clustering
if 'motif' in self.metrics_list:
if local_rank == 0:
print("Computing motif stats")
motif = motif_stats(reference_graphs, networkx_graphs, motif_type='4cycle', ground_truth_match=None, bins=100,
compute_emd=self.compute_emd)
to_log['motif'] = motif
if wandb.run:
wandb.run.summary['motif'] = motif
if 'orbit' in self.metrics_list:
if local_rank == 0:
print("Computing orbit stats...")
orbit = orbit_stats_all(reference_graphs, networkx_graphs, compute_emd=self.compute_emd)
to_log['orbit'] = orbit
if wandb.run:
wandb.run.summary['orbit'] = orbit
if 'sbm' in self.metrics_list:
if local_rank == 0:
print("Computing accuracy...")
acc = eval_acc_sbm_graph(networkx_graphs, refinement_steps=100, strict=True)
to_log['sbm_acc'] = acc
if wandb.run:
wandb.run.summary['sbmacc'] = acc
if 'planar' in self.metrics_list:
if local_rank ==0:
print('Computing planar accuracy...')
planar_acc = eval_acc_planar_graph(networkx_graphs)
to_log['planar_acc'] = planar_acc
if wandb.run:
wandb.run.summary['planar_acc'] = planar_acc
if 'sbm' or 'planar' in self.metrics_list:
if local_rank == 0:
print("Computing all fractions...")
frac_unique, frac_unique_non_isomorphic, fraction_unique_non_isomorphic_valid = eval_fraction_unique_non_isomorphic_valid(
networkx_graphs, self.train_graphs, is_sbm_graph if 'sbm' in self.metrics_list else is_planar_graph)
frac_non_isomorphic = 1.0 - eval_fraction_isomorphic(networkx_graphs, self.train_graphs)
to_log.update({'sampling/frac_unique': frac_unique,
'sampling/frac_unique_non_iso': frac_unique_non_isomorphic,
'sampling/frac_unic_non_iso_valid': fraction_unique_non_isomorphic_valid,
'sampling/frac_non_iso': frac_non_isomorphic})
if local_rank == 0:
print("Sampling statistics", to_log)
if wandb.run:
wandb.log(to_log, commit=False)
def reset(self):
pass
def loader_to_nx(loader):
networkx_graphs = {}
for i, batch in enumerate(loader):
data_list = batch.to_data_list()
for j, data in enumerate(data_list):
networkx_graphs[data.prompt_id.squeeze(0).item()] = [to_networkx(data, node_attrs=None, edge_attrs=None, to_undirected=True, remove_self_loops=True)]
return networkx_graphs
def compute_metrics(generated_graphs, referenced_graphs):
networkx_graphs = defaultdict(list)
adjacency_matrices = defaultdict(list)
for key in generated_graphs:
for graph in generated_graphs[key]:
node_types, edge_types = graph
A = edge_types.bool().cpu().numpy()
nx_graph = nx.from_numpy_array(A)
networkx_graphs[key].append(nx_graph)
adjacency_matrices[key].append(A)
new_referenced_graphs = []
for key in referenced_graphs:
new_referenced_graphs.extend(referenced_graphs[key])
referenced_graphs = new_referenced_graphs
nx_graphs = []
for key in networkx_graphs:
nx_graphs.extend(networkx_graphs[key])
return nx_graphs
class Comm20SamplingMetrics(SpectreSamplingMetrics):
def __init__(self, data_loaders):
super().__init__(data_loaders=data_loaders,
compute_emd=True,
metrics_list=['degree', 'clustering', 'orbit'])
class PlanarSamplingMetrics(SpectreSamplingMetrics):
def __init__(self, data_loaders):
super().__init__(data_loaders=data_loaders,
compute_emd=False,
metrics_list=['degree', 'clustering', 'orbit', 'spectre', 'planar'])
class SBMSamplingMetrics(SpectreSamplingMetrics):
def __init__(self, data_loaders):
super().__init__(data_loaders=data_loaders,
compute_emd=False,
metrics_list=['degree', 'clustering', 'orbit', 'spectre', 'sbm'])
class CrossDomainSamplingMetrics(SpectreSamplingMetrics):
def __init__(self, data_loaders):
super().__init__(data_loaders=data_loaders,
compute_emd=False,
metrics_list=['degree', 'clustering', 'orbit', 'spectre'])
|