File size: 13,389 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31c308
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import torch
from distributions import DistributionNodes
from utils import to_dense
from torch_geometric.loader import DataLoader
from torch_geometric.data import Data
from torch_geometric.utils import remove_self_loops, to_undirected
import os
from sentence_transformers import SentenceTransformer
import random


def arrange_data(adj_matrix, cond_emb, ind):
    n_nodes = adj_matrix.shape[0]

    edge_index = adj_matrix.nonzero().t()
    edge_attr = torch.tensor([[0, 1] for _ in range(edge_index.shape[1])])

    edge_index, edge_attr = to_undirected(edge_index, edge_attr, n_nodes, reduce = 'mean')
    edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)

    x = torch.ones((n_nodes, 1))

    y = torch.empty(1, 0)
    cond_emb = torch.tensor(cond_emb).unsqueeze(0)

    return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, prompt_id = torch.tensor(ind), cond_emb = cond_emb)



def load_dataset_cc(dataname, batch_size, hydra_path, condition):
    domains = ['cc_high', 'cc_medium', 'cc_low']
    
    
    model = SentenceTransformer("all-MiniLM-L6-v2")
    cond_embs = model.encode(condition)

    

    train_data, val_data, test_data = [], [], []

    if dataname in domains: #only for test
        train_d = torch.load(f'{hydra_path}/graphs/{dataname}/train.pt')
        val_d = torch.load(f'{hydra_path}/graphs/{dataname}/val.pt')
        test_d = torch.load(f'{hydra_path}/graphs/{dataname}/test.pt')

        train_indices = torch.load(f'{hydra_path}/graphs/{dataname}/train_indices.pt')
        val_indices = torch.load(f'{hydra_path}/graphs/{dataname}/val_indices.pt')
        test_indices = torch.load(f'{hydra_path}/graphs/{dataname}/test_indices.pt')

        with open(f'{hydra_path}/graphs/{dataname}/text_prompt_order.txt', 'r') as f:
            text_prompt = f.readlines()
            text_prompt = [x.strip() for x in text_prompt]
        
        # text_prompt = ['1111111shgowhgo234o234']*10000
        print(text_prompt[0])
        text_embs = model.encode(text_prompt)
        cond_embs = torch.tensor(text_embs)

        train_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(train_d, train_indices)])
        val_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(val_d, val_indices)])
        

        if dataname != 'eco':
            # test_data = [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(test_d, test_indices)]
            test_data = [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(test_d, test_indices)]
        else:
            test_data = [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(train_d, train_indices)] + [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(val_data, val_indices)] + [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(test_data, test_indices)]



    print('Size of dataset', len(train_data), len(val_data), len(test_data))

    train_loader = DataLoader(train_data, batch_size = batch_size, shuffle=True)
    val_loader = DataLoader(val_data, batch_size = batch_size, shuffle=False)
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)

    return train_loader, val_loader, test_loader, train_data, val_data, test_data, text_embs.shape[1], torch.tensor(cond_embs)




def load_dataset_deg(dataname, batch_size, hydra_path, condition):
    domains = ['deg_high', 'deg_medium', 'deg_low']
    
    
    model = SentenceTransformer("all-MiniLM-L6-v2")
    cond_embs = model.encode(condition)

    for domain in domains:
        if not os.path.exists(f'{hydra_path}/graphs/{domain}/train.pt'):

            data = torch.load(f'{hydra_path}/graphs/{domain}/{domain}.pt')

            #fix seed
            torch.manual_seed(0)

            #random permute and split
            n = len(data)
            indices = torch.randperm(n)

            if domain == 'eco':
                train_indices = indices[:4].repeat(50)
                val_indices = indices[4:5].repeat(50)
                test_indices = indices[5:]
            else:
                train_indices = indices[:int(0.7 * n)]
                val_indices = indices[int(0.7 * n):int(0.8 * n)]
                test_indices = indices[int(0.8 * n):]

            train_data = [data[_] for _ in train_indices]
            val_data = [data[_] for _ in val_indices]
            test_data = [data[_] for _ in test_indices]

            torch.save(train_indices, f'{hydra_path}/graphs/{domain}/train_indices.pt')
            torch.save(val_indices, f'{hydra_path}/graphs/{domain}/val_indices.pt')
            torch.save(test_indices, f'{hydra_path}/graphs/{domain}/test_indices.pt')
            
            torch.save(train_data, f'{hydra_path}/graphs/{domain}/train.pt')
            torch.save(val_data, f'{hydra_path}/graphs/{domain}/val.pt')
            torch.save(test_data, f'{hydra_path}/graphs/{domain}/test.pt')


    train_data, val_data, test_data = [], [], []

    if dataname in domains: #only for test
        train_d = torch.load(f'{hydra_path}/graphs/{dataname}/train.pt')
        val_d = torch.load(f'{hydra_path}/graphs/{dataname}/val.pt')
        test_d = torch.load(f'{hydra_path}/graphs/{dataname}/test.pt')

        train_indices = torch.load(f'{hydra_path}/graphs/{dataname}/train_indices.pt')
        val_indices = torch.load(f'{hydra_path}/graphs/{dataname}/val_indices.pt')
        test_indices = torch.load(f'{hydra_path}/graphs/{dataname}/test_indices.pt')

        with open(f'{hydra_path}/graphs/{dataname}/text_prompt_order.txt', 'r') as f:
            text_prompt = f.readlines()
            text_prompt = [x.strip() for x in text_prompt]
        

        text_embs = model.encode(text_prompt)
        cond_embs = torch.tensor(text_embs)

        train_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(train_d, train_indices)])
        val_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(val_d, val_indices)])
        

        if dataname != 'eco':
            test_data = [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(test_d, test_indices)]
        else:
            test_data = [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(train_d, train_indices)] + [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(val_data, val_indices)] + [arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(test_data, test_indices)]


    elif dataname == 'all':
        for i, domain in enumerate(domains):
            train_d = torch.load(f'{hydra_path}/graphs/{domain}/train.pt')
            val_d = torch.load(f'{hydra_path}/graphs/{domain}/val.pt')
            test_d = torch.load(f'{hydra_path}/graphs/{domain}/test.pt')

            train_indices = torch.load(f'{hydra_path}/graphs/{domain}/train_indices.pt')
            val_indices = torch.load(f'{hydra_path}/graphs/{domain}/val_indices.pt')
            test_indices = torch.load(f'{hydra_path}/graphs/{domain}/test_indices.pt')

            # text_prompt = torch.load(f'{hydra_path}/graphs/{domain}/text_prompt_order.pt')
            
            with open(f'{hydra_path}/graphs/{domain}/text_prompt_order.txt', 'r') as f:
                text_prompt = f.readlines()
                text_prompt = [x.strip() for x in text_prompt]

            print(domain, text_prompt[0])

            text_embs = model.encode(text_prompt)
            
            train_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(train_d, train_indices)])
            val_data.extend([arrange_data(d, text_embs[ind.item()], ind.item()) for d, ind in zip(val_d, val_indices)])
            test_data.extend([arrange_data(d, text_embs[ind.item()], ind.item())  for d, ind in zip(test_d, test_indices)])
            print(i, domain, len(train_data), len(val_data), len(test_data))

    print('Size of dataset', len(train_data), len(val_data), len(test_data))

    train_loader = DataLoader(train_data, batch_size = batch_size, shuffle=True)
    val_loader = DataLoader(val_data, batch_size = batch_size, shuffle=False)
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)

    return train_loader, val_loader, test_loader, train_data, val_data, test_data, text_embs.shape[1], torch.tensor(cond_embs)




def init_dataset(dataname, batch_size, hydra_path, condition, transition):
    train_loader, val_loader, test_loader, train_data, val_data, test_data, cond_dims, cond_emb = load_dataset_cc(dataname, batch_size, hydra_path, condition)

    n_nodes = node_counts(1000, train_loader, val_loader)
    node_types = torch.tensor([1]) #No node types
    edge_types = edge_counts(train_loader)
    
    num_classes = len(node_types)
    max_n_nodes = len(n_nodes) - 1
    nodes_dist = DistributionNodes(n_nodes)

    print('Distribution of Number of Nodes:', n_nodes)
    print('Distribution of Node Types:', node_types)
    print('Distribution of Edge Types:', edge_types)
    
    data_loaders = {'train': train_loader, 'val': val_loader, 'test': test_loader}

    return data_loaders, num_classes, max_n_nodes, nodes_dist, edge_types, node_types, n_nodes, cond_dims, cond_emb


def node_counts(max_nodes_possible, train_loader, val_loader):
    #Count the distribution of graph size
    all_counts = torch.zeros(max_nodes_possible)
    
    for loader in [train_loader, val_loader]:
        for data in loader:
            unique, counts = torch.unique(data.batch, return_counts=True)
            for count in counts:
                all_counts[count] += 1

    max_index = max(all_counts.nonzero())
    all_counts = all_counts[:max_index + 1]
    all_counts = all_counts / all_counts.sum()
    
    return all_counts

def node_counts_meta(max_nodes_possible, train_data, val_data, num_classes):
    #Count the distribution of graph size

    all_counts = [torch.zeros(max_nodes_possible) for _ in range(num_classes)]
    
    for dataset in [train_data, val_data]:
        for data in dataset:
            all_counts[data.cond_type.item()][data.x.shape[0]] += 1
    
    for _ in range(num_classes):
        tmp = all_counts[_].nonzero()
        if len(tmp) == 0:
            max_index = 1
            all_counts[_][0] = 1
        else:
            max_index = max(tmp)
        
        all_counts[_] = all_counts[_][:max_index + 1]        
        all_counts[_] = all_counts[_] / all_counts[_].sum()
    
    return all_counts


def node_types(train_loader):
    #Count the marginal distribution of node types
    num_classes = None
    for data in train_loader:
        num_classes = data.x.shape[1]
        break

    counts = torch.zeros(num_classes)

    for i, data in enumerate(train_loader):
        counts += data.x.sum(dim=0)

    counts = counts / counts.sum()
    return counts

def edge_counts(train_loader):
    #Count the marginal distribution of edge types
    num_classes = None
    for data in train_loader:
        num_classes = data.edge_attr.shape[1]
        break

    d = torch.zeros(num_classes, dtype=torch.float)

    for i, data in enumerate(train_loader):
        unique, counts = torch.unique(data.batch, return_counts=True)

        all_pairs = 0
        for count in counts:
            all_pairs += count * (count - 1)

        
        num_edges = data.edge_index.shape[1]
        num_non_edges = all_pairs - num_edges
            
        edge_types = data.edge_attr.sum(dim=0)
        assert num_non_edges >= 0
        d[0] += num_non_edges
        d[1:] += edge_types[1:]

    d = d / d.sum()
    return d


def edge_counts_meta(train_data, num_classes):
    #Count the marginal distribution of edge types
    num_edge_classes = None
    for data in train_data:
        num_edge_classes = data.edge_attr.shape[1]
        break

    d = [torch.ones(num_edge_classes, dtype=torch.float) for _ in range(num_classes)]

    for i, data in enumerate(train_data):
        n_nodes = data.x.shape[0]
        
        all_pairs = n_nodes * (n_nodes - 1)
        num_edges = data.edge_index.shape[1]
        num_non_edges = all_pairs - num_edges
            
        edge_types = data.edge_attr.sum(dim=0)
        assert num_non_edges >= 0
        d[data.cond_type.item()][0] += num_non_edges
        d[data.cond_type.item()][1:] += edge_types[1:]

    for i, _ in enumerate(d):
        d[i] = d[i] / d[i].sum()
    
    d = torch.stack(d)

    return d


def compute_input_output_dims(train_loader, extra_features):
    example_batch = next(iter(train_loader))
    ex_dense, node_mask = to_dense(example_batch.x, example_batch.edge_index, example_batch.edge_attr, example_batch.batch)

    example_data = {'X_t': ex_dense.X, 'E_t': ex_dense.E, 'y_t': example_batch['y'], 'node_mask': node_mask}

    input_dims = {'X': example_batch['x'].size(1),
                  'E': example_batch['edge_attr'].size(1),
                  'y': example_batch['y'].size(1) + 1}      # + 1 due to time conditioning
    
    ex_extra_feat = extra_features(example_data)
    input_dims['X'] += ex_extra_feat.X.size(-1)
    input_dims['E'] += ex_extra_feat.E.size(-1)
    input_dims['y'] += ex_extra_feat.y.size(-1)

    output_dims = {'X': example_batch['x'].size(1),
                   'E': example_batch['edge_attr'].size(1),
                   'y': 0}

    return input_dims, output_dims