Spaces:
Runtime error
Runtime error
File size: 12,986 Bytes
6b59850 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import numpy as np
import torch
import re
import wandb
try:
from rdkit import Chem
print("Found rdkit, all good")
except ModuleNotFoundError as e:
use_rdkit = False
from warnings import warn
warn("Didn't find rdkit, this will fail")
assert use_rdkit, "Didn't find rdkit"
allowed_bonds = {'H': 1, 'C': 4, 'N': 3, 'O': 2, 'F': 1, 'B': 3, 'Al': 3, 'Si': 4, 'P': [3, 5],
'S': 4, 'Cl': 1, 'As': 3, 'Br': 1, 'I': 1, 'Hg': [1, 2], 'Bi': [3, 5], 'Se': [2, 4, 6]}
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC]
ATOM_VALENCY = {6: 4, 7: 3, 8: 2, 9: 1, 15: 3, 16: 2, 17: 1, 35: 1, 53: 1}
class BasicMolecularMetrics(object):
def __init__(self, dataset_info, train_smiles=None):
self.atom_decoder = dataset_info.atom_decoder
self.dataset_info = dataset_info
# Retrieve dataset smiles only for qm9 currently.
self.dataset_smiles_list = train_smiles
def compute_validity(self, generated):
""" generated: list of couples (positions, atom_types)"""
valid = []
num_components = []
all_smiles = []
for graph in generated:
atom_types, edge_types = graph
mol = build_molecule(atom_types, edge_types, self.dataset_info.atom_decoder)
smiles = mol2smiles(mol)
try:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
num_components.append(len(mol_frags))
except:
pass
if smiles is not None:
try:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
smiles = mol2smiles(largest_mol)
valid.append(smiles)
all_smiles.append(smiles)
except Chem.rdchem.AtomValenceException:
print("Valence error in GetmolFrags")
all_smiles.append(None)
except Chem.rdchem.KekulizeException:
print("Can't kekulize molecule")
all_smiles.append(None)
else:
all_smiles.append(None)
return valid, len(valid) / len(generated), np.array(num_components), all_smiles
def compute_uniqueness(self, valid):
""" valid: list of SMILES strings."""
return list(set(valid)), len(set(valid)) / len(valid)
def compute_novelty(self, unique):
num_novel = 0
novel = []
if self.dataset_smiles_list is None:
print("Dataset smiles is None, novelty computation skipped")
return 1, 1
for smiles in unique:
if smiles not in self.dataset_smiles_list:
novel.append(smiles)
num_novel += 1
return novel, num_novel / len(unique)
def compute_relaxed_validity(self, generated):
valid = []
for graph in generated:
atom_types, edge_types = graph
mol = build_molecule_with_partial_charges(atom_types, edge_types, self.dataset_info.atom_decoder)
smiles = mol2smiles(mol)
if smiles is not None:
try:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
smiles = mol2smiles(largest_mol)
valid.append(smiles)
except Chem.rdchem.AtomValenceException:
print("Valence error in GetmolFrags")
except Chem.rdchem.KekulizeException:
print("Can't kekulize molecule")
return valid, len(valid) / len(generated)
def evaluate(self, generated):
""" generated: list of pairs (positions: n x 3, atom_types: n [int])
the positions and atom types should already be masked. """
valid, validity, num_components, all_smiles = self.compute_validity(generated)
nc_mu = num_components.mean() if len(num_components) > 0 else 0
nc_min = num_components.min() if len(num_components) > 0 else 0
nc_max = num_components.max() if len(num_components) > 0 else 0
print(f"Validity over {len(generated)} molecules: {validity * 100 :.2f}%")
print(f"Number of connected components of {len(generated)} molecules: min:{nc_min:.2f} mean:{nc_mu:.2f} max:{nc_max:.2f}")
relaxed_valid, relaxed_validity = self.compute_relaxed_validity(generated)
print(f"Relaxed validity over {len(generated)} molecules: {relaxed_validity * 100 :.2f}%")
if relaxed_validity > 0:
unique, uniqueness = self.compute_uniqueness(relaxed_valid)
print(f"Uniqueness over {len(relaxed_valid)} valid molecules: {uniqueness * 100 :.2f}%")
if self.dataset_smiles_list is not None:
_, novelty = self.compute_novelty(unique)
print(f"Novelty over {len(unique)} unique valid molecules: {novelty * 100 :.2f}%")
else:
novelty = -1.0
else:
novelty = -1.0
uniqueness = 0.0
unique = []
return ([validity, relaxed_validity, uniqueness, novelty], unique,
dict(nc_min=nc_min, nc_max=nc_max, nc_mu=nc_mu), all_smiles)
def mol2smiles(mol):
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
return Chem.MolToSmiles(mol)
def build_molecule(atom_types, edge_types, atom_decoder, verbose=False):
if verbose:
print("building new molecule")
mol = Chem.RWMol()
for atom in atom_types:
a = Chem.Atom(atom_decoder[atom.item()])
mol.AddAtom(a)
if verbose:
print("Atom added: ", atom.item(), atom_decoder[atom.item()])
edge_types = torch.triu(edge_types)
all_bonds = torch.nonzero(edge_types)
for i, bond in enumerate(all_bonds):
if bond[0].item() != bond[1].item():
mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
if verbose:
print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
bond_dict[edge_types[bond[0], bond[1]].item()] )
return mol
def build_molecule_with_partial_charges(atom_types, edge_types, atom_decoder, verbose=False):
if verbose:
print("\nbuilding new molecule")
mol = Chem.RWMol()
for atom in atom_types:
a = Chem.Atom(atom_decoder[atom.item()])
mol.AddAtom(a)
if verbose:
print("Atom added: ", atom.item(), atom_decoder[atom.item()])
edge_types = torch.triu(edge_types)
all_bonds = torch.nonzero(edge_types)
for i, bond in enumerate(all_bonds):
if bond[0].item() != bond[1].item():
mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
if verbose:
print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
bond_dict[edge_types[bond[0], bond[1]].item()])
# add formal charge to atom: e.g. [O+], [N+], [S+]
# not support [O-], [N-], [S-], [NH+] etc.
flag, atomid_valence = check_valency(mol)
if verbose:
print("flag, valence", flag, atomid_valence)
if flag:
continue
else:
assert len(atomid_valence) == 2
idx = atomid_valence[0]
v = atomid_valence[1]
an = mol.GetAtomWithIdx(idx).GetAtomicNum()
if verbose:
print("atomic num of atom with a large valence", an)
if an in (7, 8, 16) and (v - ATOM_VALENCY[an]) == 1:
mol.GetAtomWithIdx(idx).SetFormalCharge(1)
# print("Formal charge added")
return mol
# Functions from GDSS
def check_valency(mol):
try:
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
return True, None
except ValueError as e:
e = str(e)
p = e.find('#')
e_sub = e[p:]
atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
return False, atomid_valence
def correct_mol(m):
# xsm = Chem.MolToSmiles(x, isomericSmiles=True)
mol = m
#####
no_correct = False
flag, _ = check_valency(mol)
if flag:
no_correct = True
while True:
flag, atomid_valence = check_valency(mol)
if flag:
break
else:
assert len(atomid_valence) == 2
idx = atomid_valence[0]
v = atomid_valence[1]
queue = []
check_idx = 0
for b in mol.GetAtomWithIdx(idx).GetBonds():
type = int(b.GetBondType())
queue.append((b.GetIdx(), type, b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
if type == 12:
check_idx += 1
queue.sort(key=lambda tup: tup[1], reverse=True)
if queue[-1][1] == 12:
return None, no_correct
elif len(queue) > 0:
start = queue[check_idx][2]
end = queue[check_idx][3]
t = queue[check_idx][1] - 1
mol.RemoveBond(start, end)
if t >= 1:
mol.AddBond(start, end, bond_dict[t])
return mol, no_correct
def valid_mol_can_with_seg(m, largest_connected_comp=True):
if m is None:
return None
sm = Chem.MolToSmiles(m, isomericSmiles=True)
if largest_connected_comp and '.' in sm:
vsm = [(s, len(s)) for s in sm.split('.')] # 'C.CC.CCc1ccc(N)cc1CCC=O'.split('.')
vsm.sort(key=lambda tup: tup[1], reverse=True)
mol = Chem.MolFromSmiles(vsm[0][0])
else:
mol = Chem.MolFromSmiles(sm)
return mol
if __name__ == '__main__':
smiles_mol = 'C1CCC1'
print("Smiles mol %s" % smiles_mol)
chem_mol = Chem.MolFromSmiles(smiles_mol)
block_mol = Chem.MolToMolBlock(chem_mol)
print("Block mol:")
print(block_mol)
use_rdkit = True
def check_stability(atom_types, edge_types, dataset_info, debug=False,atom_decoder=None):
if atom_decoder is None:
atom_decoder = dataset_info.atom_decoder
n_bonds = np.zeros(len(atom_types), dtype='int')
for i in range(len(atom_types)):
for j in range(i + 1, len(atom_types)):
n_bonds[i] += abs((edge_types[i, j] + edge_types[j, i])/2)
n_bonds[j] += abs((edge_types[i, j] + edge_types[j, i])/2)
n_stable_bonds = 0
for atom_type, atom_n_bond in zip(atom_types, n_bonds):
possible_bonds = allowed_bonds[atom_decoder[atom_type]]
if type(possible_bonds) == int:
is_stable = possible_bonds == atom_n_bond
else:
is_stable = atom_n_bond in possible_bonds
if not is_stable and debug:
print("Invalid bonds for molecule %s with %d bonds" % (atom_decoder[atom_type], atom_n_bond))
n_stable_bonds += int(is_stable)
molecule_stable = n_stable_bonds == len(atom_types)
return molecule_stable, n_stable_bonds, len(atom_types)
def compute_molecular_metrics(molecule_list, train_smiles, dataset_info):
""" molecule_list: (dict) """
if not dataset_info.remove_h:
print(f'Analyzing molecule stability...')
molecule_stable = 0
nr_stable_bonds = 0
n_atoms = 0
n_molecules = len(molecule_list)
for i, mol in enumerate(molecule_list):
atom_types, edge_types = mol
validity_results = check_stability(atom_types, edge_types, dataset_info)
molecule_stable += int(validity_results[0])
nr_stable_bonds += int(validity_results[1])
n_atoms += int(validity_results[2])
# Validity
fraction_mol_stable = molecule_stable / float(n_molecules)
fraction_atm_stable = nr_stable_bonds / float(n_atoms)
validity_dict = {'mol_stable': fraction_mol_stable, 'atm_stable': fraction_atm_stable}
if wandb.run:
wandb.log(validity_dict)
else:
validity_dict = {'mol_stable': -1, 'atm_stable': -1}
metrics = BasicMolecularMetrics(dataset_info, train_smiles)
rdkit_metrics = metrics.evaluate(molecule_list)
all_smiles = rdkit_metrics[-1]
if wandb.run:
nc = rdkit_metrics[-2]
dic = {'Validity': rdkit_metrics[0][0], 'Relaxed Validity': rdkit_metrics[0][1],
'Uniqueness': rdkit_metrics[0][2], 'Novelty': rdkit_metrics[0][3],
'nc_max': nc['nc_max'], 'nc_mu': nc['nc_mu']}
wandb.log(dic)
return validity_dict, rdkit_metrics, all_smiles
|