File size: 12,986 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import numpy as np
import torch
import re
import wandb
try:
    from rdkit import Chem
    print("Found rdkit, all good")
except ModuleNotFoundError as e:
    use_rdkit = False
    from warnings import warn
    warn("Didn't find rdkit, this will fail")
    assert use_rdkit, "Didn't find rdkit"


allowed_bonds = {'H': 1, 'C': 4, 'N': 3, 'O': 2, 'F': 1, 'B': 3, 'Al': 3, 'Si': 4, 'P': [3, 5],
                 'S': 4, 'Cl': 1, 'As': 3, 'Br': 1, 'I': 1, 'Hg': [1, 2], 'Bi': [3, 5], 'Se': [2, 4, 6]}
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
                 Chem.rdchem.BondType.AROMATIC]
ATOM_VALENCY = {6: 4, 7: 3, 8: 2, 9: 1, 15: 3, 16: 2, 17: 1, 35: 1, 53: 1}


class BasicMolecularMetrics(object):
    def __init__(self, dataset_info, train_smiles=None):
        self.atom_decoder = dataset_info.atom_decoder
        self.dataset_info = dataset_info

        # Retrieve dataset smiles only for qm9 currently.
        self.dataset_smiles_list = train_smiles

    def compute_validity(self, generated):
        """ generated: list of couples (positions, atom_types)"""
        valid = []
        num_components = []
        all_smiles = []
        for graph in generated:
            atom_types, edge_types = graph
            mol = build_molecule(atom_types, edge_types, self.dataset_info.atom_decoder)
            smiles = mol2smiles(mol)
            try:
                mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
                num_components.append(len(mol_frags))
            except:
                pass
            if smiles is not None:
                try:
                    mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
                    largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
                    smiles = mol2smiles(largest_mol)
                    valid.append(smiles)
                    all_smiles.append(smiles)
                except Chem.rdchem.AtomValenceException:
                    print("Valence error in GetmolFrags")
                    all_smiles.append(None)
                except Chem.rdchem.KekulizeException:
                    print("Can't kekulize molecule")
                    all_smiles.append(None)
            else:
                all_smiles.append(None)

        return valid, len(valid) / len(generated), np.array(num_components), all_smiles

    def compute_uniqueness(self, valid):
        """ valid: list of SMILES strings."""
        return list(set(valid)), len(set(valid)) / len(valid)

    def compute_novelty(self, unique):
        num_novel = 0
        novel = []
        if self.dataset_smiles_list is None:
            print("Dataset smiles is None, novelty computation skipped")
            return 1, 1
        for smiles in unique:
            if smiles not in self.dataset_smiles_list:
                novel.append(smiles)
                num_novel += 1
        return novel, num_novel / len(unique)

    def compute_relaxed_validity(self, generated):
        valid = []
        for graph in generated:
            atom_types, edge_types = graph
            mol = build_molecule_with_partial_charges(atom_types, edge_types, self.dataset_info.atom_decoder)
            smiles = mol2smiles(mol)
            if smiles is not None:
                try:
                    mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
                    largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
                    smiles = mol2smiles(largest_mol)
                    valid.append(smiles)
                except Chem.rdchem.AtomValenceException:
                    print("Valence error in GetmolFrags")
                except Chem.rdchem.KekulizeException:
                    print("Can't kekulize molecule")
        return valid, len(valid) / len(generated)

    def evaluate(self, generated):
        """ generated: list of pairs (positions: n x 3, atom_types: n [int])
            the positions and atom types should already be masked. """
        valid, validity, num_components, all_smiles = self.compute_validity(generated)
        nc_mu = num_components.mean() if len(num_components) > 0 else 0
        nc_min = num_components.min() if len(num_components) > 0 else 0
        nc_max = num_components.max() if len(num_components) > 0 else 0
        print(f"Validity over {len(generated)} molecules: {validity * 100 :.2f}%")
        print(f"Number of connected components of {len(generated)} molecules: min:{nc_min:.2f} mean:{nc_mu:.2f} max:{nc_max:.2f}")

        relaxed_valid, relaxed_validity = self.compute_relaxed_validity(generated)
        print(f"Relaxed validity over {len(generated)} molecules: {relaxed_validity * 100 :.2f}%")
        if relaxed_validity > 0:
            unique, uniqueness = self.compute_uniqueness(relaxed_valid)
            print(f"Uniqueness over {len(relaxed_valid)} valid molecules: {uniqueness * 100 :.2f}%")

            if self.dataset_smiles_list is not None:
                _, novelty = self.compute_novelty(unique)
                print(f"Novelty over {len(unique)} unique valid molecules: {novelty * 100 :.2f}%")
            else:
                novelty = -1.0
        else:
            novelty = -1.0
            uniqueness = 0.0
            unique = []
        return ([validity, relaxed_validity, uniqueness, novelty], unique,
                dict(nc_min=nc_min, nc_max=nc_max, nc_mu=nc_mu), all_smiles)


def mol2smiles(mol):
    try:
        Chem.SanitizeMol(mol)
    except ValueError:
        return None
    return Chem.MolToSmiles(mol)


def build_molecule(atom_types, edge_types, atom_decoder, verbose=False):
    if verbose:
        print("building new molecule")

    mol = Chem.RWMol()
    for atom in atom_types:
        a = Chem.Atom(atom_decoder[atom.item()])
        mol.AddAtom(a)
        if verbose:
            print("Atom added: ", atom.item(), atom_decoder[atom.item()])

    edge_types = torch.triu(edge_types)
    all_bonds = torch.nonzero(edge_types)
    for i, bond in enumerate(all_bonds):
        if bond[0].item() != bond[1].item():
            mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
            if verbose:
                print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
                      bond_dict[edge_types[bond[0], bond[1]].item()] )
    return mol


def build_molecule_with_partial_charges(atom_types, edge_types, atom_decoder, verbose=False):
    if verbose:
        print("\nbuilding new molecule")

    mol = Chem.RWMol()
    for atom in atom_types:
        a = Chem.Atom(atom_decoder[atom.item()])
        mol.AddAtom(a)
        if verbose:
            print("Atom added: ", atom.item(), atom_decoder[atom.item()])
    edge_types = torch.triu(edge_types)
    all_bonds = torch.nonzero(edge_types)

    for i, bond in enumerate(all_bonds):
        if bond[0].item() != bond[1].item():
            mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
            if verbose:
                print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
                      bond_dict[edge_types[bond[0], bond[1]].item()])
            # add formal charge to atom: e.g. [O+], [N+], [S+]
            # not support [O-], [N-], [S-], [NH+] etc.
            flag, atomid_valence = check_valency(mol)
            if verbose:
                print("flag, valence", flag, atomid_valence)
            if flag:
                continue
            else:
                assert len(atomid_valence) == 2
                idx = atomid_valence[0]
                v = atomid_valence[1]
                an = mol.GetAtomWithIdx(idx).GetAtomicNum()
                if verbose:
                    print("atomic num of atom with a large valence", an)
                if an in (7, 8, 16) and (v - ATOM_VALENCY[an]) == 1:
                    mol.GetAtomWithIdx(idx).SetFormalCharge(1)
                    # print("Formal charge added")
    return mol


# Functions from GDSS
def check_valency(mol):
    try:
        Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
        return True, None
    except ValueError as e:
        e = str(e)
        p = e.find('#')
        e_sub = e[p:]
        atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
        return False, atomid_valence


def correct_mol(m):
    # xsm = Chem.MolToSmiles(x, isomericSmiles=True)
    mol = m

    #####
    no_correct = False
    flag, _ = check_valency(mol)
    if flag:
        no_correct = True

    while True:
        flag, atomid_valence = check_valency(mol)
        if flag:
            break
        else:
            assert len(atomid_valence) == 2
            idx = atomid_valence[0]
            v = atomid_valence[1]
            queue = []
            check_idx = 0
            for b in mol.GetAtomWithIdx(idx).GetBonds():
                type = int(b.GetBondType())
                queue.append((b.GetIdx(), type, b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
                if type == 12:
                    check_idx += 1
            queue.sort(key=lambda tup: tup[1], reverse=True)

            if queue[-1][1] == 12:
                return None, no_correct
            elif len(queue) > 0:
                start = queue[check_idx][2]
                end = queue[check_idx][3]
                t = queue[check_idx][1] - 1
                mol.RemoveBond(start, end)
                if t >= 1:
                    mol.AddBond(start, end, bond_dict[t])
    return mol, no_correct


def valid_mol_can_with_seg(m, largest_connected_comp=True):
    if m is None:
        return None
    sm = Chem.MolToSmiles(m, isomericSmiles=True)
    if largest_connected_comp and '.' in sm:
        vsm = [(s, len(s)) for s in sm.split('.')]  # 'C.CC.CCc1ccc(N)cc1CCC=O'.split('.')
        vsm.sort(key=lambda tup: tup[1], reverse=True)
        mol = Chem.MolFromSmiles(vsm[0][0])
    else:
        mol = Chem.MolFromSmiles(sm)
    return mol


if __name__ == '__main__':
    smiles_mol = 'C1CCC1'
    print("Smiles mol %s" % smiles_mol)
    chem_mol = Chem.MolFromSmiles(smiles_mol)
    block_mol = Chem.MolToMolBlock(chem_mol)
    print("Block mol:")
    print(block_mol)

use_rdkit = True


def check_stability(atom_types, edge_types, dataset_info, debug=False,atom_decoder=None):
    if atom_decoder is None:
        atom_decoder = dataset_info.atom_decoder

    n_bonds = np.zeros(len(atom_types), dtype='int')

    for i in range(len(atom_types)):
        for j in range(i + 1, len(atom_types)):
            n_bonds[i] += abs((edge_types[i, j] + edge_types[j, i])/2)
            n_bonds[j] += abs((edge_types[i, j] + edge_types[j, i])/2)
    n_stable_bonds = 0
    for atom_type, atom_n_bond in zip(atom_types, n_bonds):
        possible_bonds = allowed_bonds[atom_decoder[atom_type]]
        if type(possible_bonds) == int:
            is_stable = possible_bonds == atom_n_bond
        else:
            is_stable = atom_n_bond in possible_bonds
        if not is_stable and debug:
            print("Invalid bonds for molecule %s with %d bonds" % (atom_decoder[atom_type], atom_n_bond))
        n_stable_bonds += int(is_stable)

    molecule_stable = n_stable_bonds == len(atom_types)
    return molecule_stable, n_stable_bonds, len(atom_types)


def compute_molecular_metrics(molecule_list, train_smiles, dataset_info):
    """ molecule_list: (dict) """

    if not dataset_info.remove_h:
        print(f'Analyzing molecule stability...')

        molecule_stable = 0
        nr_stable_bonds = 0
        n_atoms = 0
        n_molecules = len(molecule_list)

        for i, mol in enumerate(molecule_list):
            atom_types, edge_types = mol

            validity_results = check_stability(atom_types, edge_types, dataset_info)

            molecule_stable += int(validity_results[0])
            nr_stable_bonds += int(validity_results[1])
            n_atoms += int(validity_results[2])

        # Validity
        fraction_mol_stable = molecule_stable / float(n_molecules)
        fraction_atm_stable = nr_stable_bonds / float(n_atoms)
        validity_dict = {'mol_stable': fraction_mol_stable, 'atm_stable': fraction_atm_stable}
        if wandb.run:
            wandb.log(validity_dict)
    else:
        validity_dict = {'mol_stable': -1, 'atm_stable': -1}

    metrics = BasicMolecularMetrics(dataset_info, train_smiles)
    rdkit_metrics = metrics.evaluate(molecule_list)
    all_smiles = rdkit_metrics[-1]
    if wandb.run:
        nc = rdkit_metrics[-2]
        dic = {'Validity': rdkit_metrics[0][0], 'Relaxed Validity': rdkit_metrics[0][1],
               'Uniqueness': rdkit_metrics[0][2], 'Novelty': rdkit_metrics[0][3],
               'nc_max': nc['nc_max'], 'nc_mu': nc['nc_mu']}
        wandb.log(dic)

    return validity_dict, rdkit_metrics, all_smiles