Spaces:
Paused
Paused
| import torch | |
| import torch.nn.functional as F | |
| class Mahiro: | |
| def INPUT_TYPES(s): | |
| return {"required": {"model": ("MODEL",), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| RETURN_NAMES = ("patched_model",) | |
| FUNCTION = "patch" | |
| CATEGORY = "_for_testing" | |
| DESCRIPTION = "Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt." | |
| def patch(self, model): | |
| m = model.clone() | |
| def mahiro_normd(args): | |
| scale: float = args['cond_scale'] | |
| cond_p: torch.Tensor = args['cond_denoised'] | |
| uncond_p: torch.Tensor = args['uncond_denoised'] | |
| #naive leap | |
| leap = cond_p * scale | |
| #sim with uncond leap | |
| u_leap = uncond_p * scale | |
| cfg = args["denoised"] | |
| merge = (leap + cfg) / 2 | |
| normu = torch.sqrt(u_leap.abs()) * u_leap.sign() | |
| normm = torch.sqrt(merge.abs()) * merge.sign() | |
| sim = F.cosine_similarity(normu, normm).mean() | |
| simsc = 2 * (sim+1) | |
| wm = (simsc*cfg + (4-simsc)*leap) / 4 | |
| return wm | |
| m.set_model_sampler_post_cfg_function(mahiro_normd) | |
| return (m, ) | |
| NODE_CLASS_MAPPINGS = { | |
| "Mahiro": Mahiro | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "Mahiro": "Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", | |
| } | |