Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,46 +20,60 @@ pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
|
| 20 |
|
| 21 |
def text_to_audio(text, speed=1.0):
|
| 22 |
"""Convert text to audio using Kokoro model.
|
|
|
|
| 23 |
Args:
|
| 24 |
text: The text to convert to speech
|
| 25 |
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
| 26 |
-
|
|
|
|
| 27 |
Audio data as a tuple of (sample_rate, audio_array)
|
| 28 |
"""
|
| 29 |
if not text:
|
| 30 |
return None
|
|
|
|
| 31 |
pipeline = pipelines['a'] # Use English pipeline
|
| 32 |
voice = "af_heart" # Default voice (US English, female, Heart)
|
|
|
|
| 33 |
# Process the text
|
| 34 |
pack = pipeline.load_voice(voice)
|
|
|
|
| 35 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 36 |
ref_s = pack[len(ps)-1]
|
|
|
|
| 37 |
# Generate audio
|
| 38 |
try:
|
| 39 |
audio = model(ps, ref_s, speed)
|
| 40 |
except Exception as e:
|
| 41 |
raise gr.Error(f"Error generating audio: {str(e)}")
|
|
|
|
| 42 |
# Return the audio with 24kHz sample rate
|
| 43 |
return 24000, audio.numpy()
|
|
|
|
| 44 |
return None
|
| 45 |
|
| 46 |
def text_to_audio_b64(text, speed=1.0):
|
| 47 |
"""Convert text to audio and return as base64 encoded WAV file.
|
|
|
|
| 48 |
Args:
|
| 49 |
text: The text to convert to speech
|
| 50 |
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
|
|
|
| 51 |
Returns:
|
| 52 |
Base64 encoded WAV file as a string
|
| 53 |
"""
|
| 54 |
import soundfile as sf
|
|
|
|
| 55 |
result = text_to_audio(text, speed)
|
| 56 |
if result is None:
|
| 57 |
return None
|
|
|
|
| 58 |
sample_rate, audio_data = result
|
|
|
|
| 59 |
# Save to BytesIO object
|
| 60 |
wav_io = io.BytesIO()
|
| 61 |
sf.write(wav_io, audio_data, sample_rate, format='WAV')
|
| 62 |
wav_io.seek(0)
|
|
|
|
| 63 |
# Convert to base64
|
| 64 |
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
|
| 65 |
return wav_b64
|
|
@@ -68,64 +82,60 @@ def text_to_audio_b64(text, speed=1.0):
|
|
| 68 |
with gr.Blocks(title="Kokoro Text-to-Audio MCP") as app:
|
| 69 |
gr.Markdown("# 🎵 Kokoro Text-to-Audio MCP")
|
| 70 |
gr.Markdown("Convert text to speech using the Kokoro-82M model")
|
| 71 |
-
|
| 72 |
-
with gr.
|
| 73 |
-
with gr.
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
}
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
gr.HTML(
|
| 119 |
-
'<iframe src="http://localhost:8080/" ' # Assuming AIxCel serves from root '/'
|
| 120 |
-
'style="width: 100%; height: 800px; border: none;" '
|
| 121 |
-
'allow="accelerometer; ambient-light-sensor; camera; encrypted-media; geolocation; gyroscope; hid; microphone; midi; clipboard-read; clipboard-write; web-share" '
|
| 122 |
-
'sandbox="allow-forms allow-modals allow-popups allow-presentation allow-same-origin allow-scripts">'
|
| 123 |
-
'</iframe>'
|
| 124 |
-
)
|
| 125 |
-
gr.Markdown("If the AIxCel app does not load, please visit it directly: [AIxCel Space](https://huggingface.co/spaces/YoussefSharawy91/AIxCel)")
|
| 126 |
|
| 127 |
# Launch the app with MCP support
|
| 128 |
if __name__ == "__main__":
|
| 129 |
# Check for environment variable to enable MCP
|
| 130 |
enable_mcp = os.environ.get('GRADIO_MCP_SERVER', 'True').lower() in ('true', '1', 't')
|
| 131 |
-
|
|
|
|
|
|
| 20 |
|
| 21 |
def text_to_audio(text, speed=1.0):
|
| 22 |
"""Convert text to audio using Kokoro model.
|
| 23 |
+
|
| 24 |
Args:
|
| 25 |
text: The text to convert to speech
|
| 26 |
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
Audio data as a tuple of (sample_rate, audio_array)
|
| 30 |
"""
|
| 31 |
if not text:
|
| 32 |
return None
|
| 33 |
+
|
| 34 |
pipeline = pipelines['a'] # Use English pipeline
|
| 35 |
voice = "af_heart" # Default voice (US English, female, Heart)
|
| 36 |
+
|
| 37 |
# Process the text
|
| 38 |
pack = pipeline.load_voice(voice)
|
| 39 |
+
|
| 40 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 41 |
ref_s = pack[len(ps)-1]
|
| 42 |
+
|
| 43 |
# Generate audio
|
| 44 |
try:
|
| 45 |
audio = model(ps, ref_s, speed)
|
| 46 |
except Exception as e:
|
| 47 |
raise gr.Error(f"Error generating audio: {str(e)}")
|
| 48 |
+
|
| 49 |
# Return the audio with 24kHz sample rate
|
| 50 |
return 24000, audio.numpy()
|
| 51 |
+
|
| 52 |
return None
|
| 53 |
|
| 54 |
def text_to_audio_b64(text, speed=1.0):
|
| 55 |
"""Convert text to audio and return as base64 encoded WAV file.
|
| 56 |
+
|
| 57 |
Args:
|
| 58 |
text: The text to convert to speech
|
| 59 |
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
| 60 |
+
|
| 61 |
Returns:
|
| 62 |
Base64 encoded WAV file as a string
|
| 63 |
"""
|
| 64 |
import soundfile as sf
|
| 65 |
+
|
| 66 |
result = text_to_audio(text, speed)
|
| 67 |
if result is None:
|
| 68 |
return None
|
| 69 |
+
|
| 70 |
sample_rate, audio_data = result
|
| 71 |
+
|
| 72 |
# Save to BytesIO object
|
| 73 |
wav_io = io.BytesIO()
|
| 74 |
sf.write(wav_io, audio_data, sample_rate, format='WAV')
|
| 75 |
wav_io.seek(0)
|
| 76 |
+
|
| 77 |
# Convert to base64
|
| 78 |
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
|
| 79 |
return wav_b64
|
|
|
|
| 82 |
with gr.Blocks(title="Kokoro Text-to-Audio MCP") as app:
|
| 83 |
gr.Markdown("# 🎵 Kokoro Text-to-Audio MCP")
|
| 84 |
gr.Markdown("Convert text to speech using the Kokoro-82M model")
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
text_input = gr.Textbox(
|
| 89 |
+
label="Enter your text",
|
| 90 |
+
placeholder="Type something to convert to audio...",
|
| 91 |
+
lines=5
|
| 92 |
+
)
|
| 93 |
+
speed_slider = gr.Slider(
|
| 94 |
+
minimum=0.5,
|
| 95 |
+
maximum=2.0,
|
| 96 |
+
value=1.0,
|
| 97 |
+
step=0.1,
|
| 98 |
+
label="Speech Speed"
|
| 99 |
+
)
|
| 100 |
+
submit_btn = gr.Button("Generate Audio")
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
| 104 |
+
|
| 105 |
+
submit_btn.click(
|
| 106 |
+
fn=text_to_audio,
|
| 107 |
+
inputs=[text_input, speed_slider],
|
| 108 |
+
outputs=[audio_output]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
gr.Markdown("### Usage Tips")
|
| 112 |
+
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
|
| 113 |
+
|
| 114 |
+
# Add section about MCP support
|
| 115 |
+
with gr.Accordion("MCP Support (for LLMs)", open=False):
|
| 116 |
+
gr.Markdown("""
|
| 117 |
+
### MCP Support
|
| 118 |
+
|
| 119 |
+
This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a tool.
|
| 120 |
+
|
| 121 |
+
To use this app with an MCP client, add the following configuration:
|
| 122 |
+
|
| 123 |
+
```json
|
| 124 |
+
{
|
| 125 |
+
"mcpServers": {
|
| 126 |
+
"kokoroTTS": {
|
| 127 |
+
"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
|
| 128 |
}
|
| 129 |
+
}
|
| 130 |
+
}
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Replace `your-app-url.hf.space` with your actual Hugging Face Space URL.
|
| 134 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
# Launch the app with MCP support
|
| 137 |
if __name__ == "__main__":
|
| 138 |
# Check for environment variable to enable MCP
|
| 139 |
enable_mcp = os.environ.get('GRADIO_MCP_SERVER', 'True').lower() in ('true', '1', 't')
|
| 140 |
+
|
| 141 |
+
app.launch(mcp_server=True)
|