import gradio as gr from transformers import pipeline # Load the car classification model pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier") # Define the prediction function def predict(input_img): predictions = pipe(input_img) return input_img, {p["label"]: p["score"] for p in predictions} # Create the Gradio interface gradio_app = gr.Interface( fn=predict, inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"), outputs=[gr.Image(label="Processed Image"), gr.Label(label="Car Model Type", num_top_classes=3)], title="Car Classifier", description="Upload an image of a car and get the predicted class" ) if __name__ == "__main__": gradio_app.launch()