File size: 7,479 Bytes
d9c23d1
 
b5faafa
fc07371
d9c23d1
 
fc07371
d9c23d1
fc07371
b5faafa
d9c23d1
664b67c
b5faafa
 
 
 
 
 
d9c23d1
 
 
fc07371
d9c23d1
 
fc07371
d9c23d1
 
 
 
fc07371
d9c23d1
 
 
 
b5faafa
d9c23d1
 
 
fc07371
b5faafa
d9c23d1
 
 
 
 
 
b5faafa
d9c23d1
 
 
 
fc07371
 
 
d9c23d1
 
 
fc07371
b7d2d3d
b5faafa
b7d2d3d
 
d9c23d1
 
b5faafa
fc07371
 
 
dfe572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5faafa
dfe572b
fc07371
 
 
 
 
 
 
 
 
 
 
d9c23d1
 
fc07371
d9c23d1
 
 
 
664b67c
 
 
 
d9c23d1
 
 
 
fc07371
 
d9c23d1
3681af9
 
 
 
3fba19d
d9c23d1
fc07371
 
d9c23d1
 
 
fc07371
d9c23d1
3fba19d
 
 
 
 
 
 
 
 
 
 
 
b5faafa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fba19d
 
 
 
 
 
 
 
b5faafa
3fba19d
d9c23d1
3fba19d
d9c23d1
 
fc07371
3fba19d
 
b5faafa
 
3fba19d
fc07371
d9c23d1
 
 
 
fc07371
d9c23d1
b7d2d3d
 
fc07371
 
d9c23d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from supabase import create_client
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_openai import ChatOpenAI
from langchain_core.documents import Document
import json

load_dotenv()

# ------------------- TOOL DEFINITIONS -------------------
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b. Raise error if b is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get remainder of a divided by b."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query (max 2 results)."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n".join([doc.page_content for doc in docs])

@tool
def web_search(query: str) -> str:
    """Search the web using Tavily (max 3 results)."""
    results = TavilySearchResults(max_results=3).invoke(query)
    texts = [doc.get("content", "") or doc.get("text", "") for doc in results if isinstance(doc, dict)]
    return "\n\n".join(texts)

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for academic papers (max 3 results, truncated to 1000 characters each)."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n".join([doc.page_content[:1000] for doc in docs])

@tool
def read_excel_file(path: str) -> str:
    """Read an Excel file and return the first few rows of each sheet as text."""
    import pandas as pd
    try:
        xls = pd.ExcelFile(path)
        content = ""
        for sheet in xls.sheet_names:
            df = xls.parse(sheet)
            content += f"Sheet: {sheet}\n"
            content += df.head(5).to_string(index=False) + "\n\n"
        return content.strip()
    except Exception as e:
        return f"Error reading Excel file: {str(e)}"



tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, read_excel_file]

# ------------------- SYSTEM PROMPT -------------------
system_prompt_path = "system_prompt.txt"
if os.path.exists(system_prompt_path):
    with open(system_prompt_path, "r", encoding="utf-8") as f:
        system_prompt = f.read()
else:
    system_prompt = (
        "You are an intelligent AI agent who can solve math, science, factual, and research-based problems. "
        "You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers."
    )
sys_msg = SystemMessage(content=system_prompt)

# ------------------- GRAPH CONSTRUCTION -------------------
def build_graph(provider: str = "groq"):
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        groq_key = os.getenv("GROQ_API_KEY")
        if not groq_key:
            raise ValueError("GROQ_API_KEY is not set.")
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_key)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0
            )
        )
    elif provider == "openai":
        openai_key = os.getenv("OPENAI_API_KEY")
        if not openai_key:
            raise ValueError("OPENAI_API_KEY is not set.")
        llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=openai_key)
    else:
        raise ValueError("Invalid provider")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}

    SUPABASE_URL = os.getenv("SUPABASE_URL")
    SUPABASE_KEY = os.getenv("SUPABASE_SERVICE_KEY")
    supabase = create_client(SUPABASE_URL, SUPABASE_KEY)

    embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    vectorstore = SupabaseVectorStore(
        client=supabase,
        embedding=embedding_model,
        table_name="QA_db"
    )
    retriever = vectorstore.as_retriever(search_kwargs={"k": 1})


    # ✅ 替换 similarity_search_by_vector_with_relevance_scores 方法,直接调用 supabase.rpc
    original_fn = vectorstore.similarity_search_by_vector_with_relevance_scores

    # ✅ 覆盖 vectorstore 的方法
    def patched_fn(embedding, k=4, filter=None, **kwargs):
        response = supabase.rpc(
            "match_documents",
            {
                "query_embedding": embedding,
                "match_count": k
            }
        ).execute()

        documents = []
        for r in response.data:
            metadata = r["metadata"]
            if isinstance(metadata, str):
                try:
                    metadata = json.loads(metadata)
                except Exception:
                    metadata = {}
            doc = Document(
                page_content=r["content"],
                metadata=metadata
            )
            documents.append((doc, r["similarity"]))
        return documents

    # ✅ 覆盖 vectorstore 的方法
    vectorstore.similarity_search_by_vector_with_relevance_scores = patched_fn

    def qa_retriever_node(state: MessagesState):
        user_question = state["messages"][-1].content
        docs = retriever.invoke(user_question)
        if docs:
            return {
                "messages": state["messages"] + [AIMessage(content=docs[0].page_content)],
                "__condition__": "complete"
            }
        return {"messages": state["messages"], "__condition__": "default"}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", qa_retriever_node)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    builder.add_edge(START, "retriever")
    builder.add_conditional_edges("retriever", {
        "default": lambda x: "assistant",
        "complete": lambda x: END,
    })
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

# ------------------- LOCAL TEST -------------------
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    graph = build_graph(provider="openai")
    messages = graph.invoke({"messages": [HumanMessage(content=question)]})
    print("=== AI Agent Response ===")
    for m in messages["messages"]:
        m.pretty_print()