Spaces:
Sleeping
Sleeping
Force update Space with optimized robot planning interface
Browse files- README.md +10 -25
- app.py +79 -87
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -8,38 +8,23 @@ sdk_version: 4.44.0
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: llama3.1
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# Robot Task Planning - Llama 3.1 8B
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
The model converts natural language commands into structured task sequences for construction robots like excavators and dump trucks.
|
| 18 |
|
| 19 |
## Model
|
| 20 |
-
|
| 21 |
-
The model is available at: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
| 22 |
|
| 23 |
## Features
|
| 24 |
-
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
-
-
|
| 28 |
-
- **Real-time Planning**: Instant task generation powered by Gradio
|
| 29 |
|
| 30 |
## Usage
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
## Technical Details
|
| 35 |
-
|
| 36 |
-
- **Base Model**: meta-llama/Llama-3.1-8B
|
| 37 |
-
- **Fine-tuning**: QLoRA (4-bit quantization + LoRA)
|
| 38 |
-
- **Interface**: Gradio
|
| 39 |
-
- **Hosting**: HuggingFace Spaces
|
| 40 |
-
- **Input**: Natural language robot commands
|
| 41 |
-
- **Output**: Structured JSON task sequences
|
| 42 |
-
|
| 43 |
-
## Performance
|
| 44 |
-
|
| 45 |
-
⚠️ **Note**: Model loading may take 3-5 minutes on first startup due to the large model size and quantization process.
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: llama3.1
|
| 11 |
+
hardware: t4-medium
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# 🤖 Robot Task Planning - Llama 3.1 8B
|
| 15 |
|
| 16 |
+
Fine-tuned Llama 3.1 8B model for robot task planning using QLoRA technique.
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Model
|
| 19 |
+
[YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
|
|
|
| 20 |
|
| 21 |
## Features
|
| 22 |
+
- Natural language to robot task conversion
|
| 23 |
+
- Multi-robot coordination
|
| 24 |
+
- Real-time task generation
|
| 25 |
+
- Optimized with 4-bit quantization
|
|
|
|
| 26 |
|
| 27 |
## Usage
|
| 28 |
+
Input robot commands and get structured task sequences for excavators, dump trucks, and other construction robots.
|
| 29 |
|
| 30 |
+
Loading time: ~3-5 minutes on first startup.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
from peft import PeftModel
|
| 5 |
import warnings
|
|
|
|
| 6 |
warnings.filterwarnings("ignore")
|
| 7 |
|
| 8 |
# 模型配置
|
|
@@ -23,7 +24,11 @@ def load_model():
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# 加载分词器
|
| 26 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
if tokenizer.pad_token is None:
|
| 28 |
tokenizer.pad_token = tokenizer.eos_token
|
| 29 |
|
|
@@ -33,11 +38,16 @@ def load_model():
|
|
| 33 |
quantization_config=bnb_config,
|
| 34 |
device_map="auto",
|
| 35 |
torch_dtype=torch.float16,
|
| 36 |
-
trust_remote_code=True
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
# 加载 LoRA 适配器
|
| 40 |
-
model = PeftModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
model.eval()
|
| 42 |
|
| 43 |
print("✅ Model loaded successfully!")
|
|
@@ -47,28 +57,47 @@ def load_model():
|
|
| 47 |
print(f"❌ Model loading failed: {load_error}")
|
| 48 |
return None, None
|
| 49 |
|
| 50 |
-
#
|
| 51 |
model = None
|
| 52 |
tokenizer = None
|
|
|
|
| 53 |
|
| 54 |
def initialize_model():
|
| 55 |
-
"""初始化模型
|
| 56 |
-
global model, tokenizer
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
model, tokenizer = load_model()
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
| 62 |
"""生成回复"""
|
| 63 |
if not initialize_model():
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
try:
|
| 67 |
-
# 格式化输入
|
| 68 |
-
formatted_prompt = prompt.strip()
|
| 69 |
|
| 70 |
# 编码输入
|
| 71 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# 生成回复
|
| 74 |
with torch.no_grad():
|
|
@@ -82,19 +111,18 @@ def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
|
| 82 |
eos_token_id=tokenizer.eos_token_id,
|
| 83 |
repetition_penalty=1.1,
|
| 84 |
early_stopping=True,
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# 解码输出
|
| 88 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
if
|
|
|
|
|
|
|
| 92 |
response = response[len(formatted_prompt):].strip()
|
| 93 |
|
| 94 |
-
# 如果回复包含特殊标记,进行清理
|
| 95 |
-
if "Assistant:" in response:
|
| 96 |
-
response = response.split("Assistant:")[-1].strip()
|
| 97 |
-
|
| 98 |
return response if response else "❌ No response generated. Please try again."
|
| 99 |
|
| 100 |
except Exception as generation_error:
|
|
@@ -115,104 +143,68 @@ def chat_interface(message, history, max_tokens, temperature, top_p):
|
|
| 115 |
return history, ""
|
| 116 |
|
| 117 |
# 创建 Gradio 应用
|
| 118 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
gr.Markdown("""
|
| 120 |
# 🤖 Llama 3.1 8B - Robot Task Planning
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots.
|
| 125 |
|
| 126 |
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
| 127 |
|
| 128 |
-
⚠️ **
|
| 129 |
""")
|
| 130 |
|
| 131 |
with gr.Row():
|
| 132 |
with gr.Column(scale=3):
|
| 133 |
chatbot = gr.Chatbot(
|
| 134 |
-
label="Task Planning Results",
|
| 135 |
-
height=
|
| 136 |
-
|
| 137 |
-
container=True,
|
| 138 |
-
bubble_full_width=False
|
| 139 |
)
|
| 140 |
|
| 141 |
msg = gr.Textbox(
|
| 142 |
label="Robot Command",
|
| 143 |
-
placeholder="
|
| 144 |
-
lines=2
|
| 145 |
-
max_lines=5,
|
| 146 |
-
show_label=True,
|
| 147 |
-
container=True
|
| 148 |
)
|
| 149 |
|
| 150 |
with gr.Row():
|
| 151 |
-
send_btn = gr.Button("Generate
|
| 152 |
-
clear_btn = gr.Button("Clear", variant="secondary"
|
| 153 |
|
| 154 |
with gr.Column(scale=1):
|
| 155 |
-
gr.Markdown("### ⚙️
|
| 156 |
|
| 157 |
-
max_tokens = gr.Slider(
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
value=200,
|
| 161 |
-
step=10,
|
| 162 |
-
label="Max Tokens",
|
| 163 |
-
info="Maximum number of tokens to generate"
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
temperature = gr.Slider(
|
| 167 |
-
minimum=0.1,
|
| 168 |
-
maximum=2.0,
|
| 169 |
-
value=0.7,
|
| 170 |
-
step=0.1,
|
| 171 |
-
label="Temperature",
|
| 172 |
-
info="Controls randomness (lower = more focused)"
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
top_p = gr.Slider(
|
| 176 |
-
minimum=0.1,
|
| 177 |
-
maximum=1.0,
|
| 178 |
-
value=0.9,
|
| 179 |
-
step=0.05,
|
| 180 |
-
label="Top-p",
|
| 181 |
-
info="Nucleus sampling threshold"
|
| 182 |
-
)
|
| 183 |
|
| 184 |
-
#
|
| 185 |
gr.Examples(
|
| 186 |
examples=[
|
| 187 |
["Deploy Excavator 1 to Soil Area 1 for excavation."],
|
| 188 |
-
["Send Dump Truck 1 to collect material
|
| 189 |
-
["Move all robots to avoid Puddle 1
|
| 190 |
-
["
|
| 191 |
-
["
|
| 192 |
-
["Send robot to inspect rock area, then avoid with all other robots."],
|
| 193 |
-
["Return all robots to start position after completing tasks."],
|
| 194 |
],
|
| 195 |
inputs=msg,
|
| 196 |
-
label="💡
|
| 197 |
)
|
| 198 |
|
| 199 |
# 事件处理
|
| 200 |
-
msg.submit(
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
outputs=[chatbot, msg]
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
send_btn.click(
|
| 207 |
-
chat_interface,
|
| 208 |
-
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
| 209 |
-
outputs=[chatbot, msg]
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
clear_btn.click(
|
| 213 |
-
lambda: ([], ""),
|
| 214 |
-
outputs=[chatbot, msg]
|
| 215 |
-
)
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
| 218 |
-
demo.launch()
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
from peft import PeftModel
|
| 5 |
import warnings
|
| 6 |
+
import os
|
| 7 |
warnings.filterwarnings("ignore")
|
| 8 |
|
| 9 |
# 模型配置
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
# 加载分词器
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 28 |
+
MODEL_NAME,
|
| 29 |
+
use_fast=False,
|
| 30 |
+
trust_remote_code=True
|
| 31 |
+
)
|
| 32 |
if tokenizer.pad_token is None:
|
| 33 |
tokenizer.pad_token = tokenizer.eos_token
|
| 34 |
|
|
|
|
| 38 |
quantization_config=bnb_config,
|
| 39 |
device_map="auto",
|
| 40 |
torch_dtype=torch.float16,
|
| 41 |
+
trust_remote_code=True,
|
| 42 |
+
low_cpu_mem_usage=True
|
| 43 |
)
|
| 44 |
|
| 45 |
# 加载 LoRA 适配器
|
| 46 |
+
model = PeftModel.from_pretrained(
|
| 47 |
+
base_model,
|
| 48 |
+
LORA_MODEL,
|
| 49 |
+
torch_dtype=torch.float16
|
| 50 |
+
)
|
| 51 |
model.eval()
|
| 52 |
|
| 53 |
print("✅ Model loaded successfully!")
|
|
|
|
| 57 |
print(f"❌ Model loading failed: {load_error}")
|
| 58 |
return None, None
|
| 59 |
|
| 60 |
+
# 全局变量
|
| 61 |
model = None
|
| 62 |
tokenizer = None
|
| 63 |
+
model_loading = False
|
| 64 |
|
| 65 |
def initialize_model():
|
| 66 |
+
"""初始化模型"""
|
| 67 |
+
global model, tokenizer, model_loading
|
| 68 |
+
|
| 69 |
+
if model is not None and tokenizer is not None:
|
| 70 |
+
return True
|
| 71 |
+
|
| 72 |
+
if model_loading:
|
| 73 |
+
return False
|
| 74 |
+
|
| 75 |
+
model_loading = True
|
| 76 |
+
try:
|
| 77 |
model, tokenizer = load_model()
|
| 78 |
+
return model is not None and tokenizer is not None
|
| 79 |
+
finally:
|
| 80 |
+
model_loading = False
|
| 81 |
|
| 82 |
def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
| 83 |
"""生成回复"""
|
| 84 |
if not initialize_model():
|
| 85 |
+
if model_loading:
|
| 86 |
+
return "🔄 Model is loading, please wait a few minutes and try again..."
|
| 87 |
+
else:
|
| 88 |
+
return "❌ Model failed to load. Please check the Space logs."
|
| 89 |
|
| 90 |
try:
|
| 91 |
+
# 格式化输入
|
| 92 |
+
formatted_prompt = f"### Human: {prompt.strip()}\n### Assistant:"
|
| 93 |
|
| 94 |
# 编码输入
|
| 95 |
+
inputs = tokenizer(
|
| 96 |
+
formatted_prompt,
|
| 97 |
+
return_tensors="pt",
|
| 98 |
+
truncation=True,
|
| 99 |
+
max_length=2048
|
| 100 |
+
).to(model.device)
|
| 101 |
|
| 102 |
# 生成回复
|
| 103 |
with torch.no_grad():
|
|
|
|
| 111 |
eos_token_id=tokenizer.eos_token_id,
|
| 112 |
repetition_penalty=1.1,
|
| 113 |
early_stopping=True,
|
| 114 |
+
no_repeat_ngram_size=3
|
| 115 |
)
|
| 116 |
|
| 117 |
# 解码输出
|
| 118 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 119 |
|
| 120 |
+
# 提取生成的部分
|
| 121 |
+
if "### Assistant:" in response:
|
| 122 |
+
response = response.split("### Assistant:")[-1].strip()
|
| 123 |
+
elif len(response) > len(formatted_prompt):
|
| 124 |
response = response[len(formatted_prompt):].strip()
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return response if response else "❌ No response generated. Please try again."
|
| 127 |
|
| 128 |
except Exception as generation_error:
|
|
|
|
| 143 |
return history, ""
|
| 144 |
|
| 145 |
# 创建 Gradio 应用
|
| 146 |
+
with gr.Blocks(
|
| 147 |
+
title="Robot Task Planning - Llama 3.1 8B",
|
| 148 |
+
theme=gr.themes.Soft(),
|
| 149 |
+
css="""
|
| 150 |
+
.gradio-container {
|
| 151 |
+
max-width: 1200px;
|
| 152 |
+
margin: auto;
|
| 153 |
+
}
|
| 154 |
+
"""
|
| 155 |
+
) as demo:
|
| 156 |
gr.Markdown("""
|
| 157 |
# 🤖 Llama 3.1 8B - Robot Task Planning
|
| 158 |
|
| 159 |
+
Fine-tuned version of Meta's Llama 3.1 8B for **robot task planning** using QLoRA.
|
|
|
|
|
|
|
| 160 |
|
| 161 |
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
| 162 |
|
| 163 |
+
⚠️ **First load takes 3-5 minutes**
|
| 164 |
""")
|
| 165 |
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column(scale=3):
|
| 168 |
chatbot = gr.Chatbot(
|
| 169 |
+
label="🤖 Task Planning Results",
|
| 170 |
+
height=500,
|
| 171 |
+
show_copy_button=True
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
msg = gr.Textbox(
|
| 175 |
label="Robot Command",
|
| 176 |
+
placeholder="e.g., 'Deploy Excavator 1 to Soil Area 1'...",
|
| 177 |
+
lines=2
|
|
|
|
|
|
|
|
|
|
| 178 |
)
|
| 179 |
|
| 180 |
with gr.Row():
|
| 181 |
+
send_btn = gr.Button("🚀 Generate", variant="primary")
|
| 182 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 183 |
|
| 184 |
with gr.Column(scale=1):
|
| 185 |
+
gr.Markdown("### ⚙️ Settings")
|
| 186 |
|
| 187 |
+
max_tokens = gr.Slider(50, 500, 200, label="Max Tokens")
|
| 188 |
+
temperature = gr.Slider(0.1, 2.0, 0.7, step=0.1, label="Temperature")
|
| 189 |
+
top_p = gr.Slider(0.1, 1.0, 0.9, step=0.05, label="Top-p")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
# 示例
|
| 192 |
gr.Examples(
|
| 193 |
examples=[
|
| 194 |
["Deploy Excavator 1 to Soil Area 1 for excavation."],
|
| 195 |
+
["Send Dump Truck 1 to collect material and unload at storage."],
|
| 196 |
+
["Move all robots to avoid dangerous Puddle 1."],
|
| 197 |
+
["Coordinate multiple excavators across different areas."],
|
| 198 |
+
["Create evacuation sequence for all robots."],
|
|
|
|
|
|
|
| 199 |
],
|
| 200 |
inputs=msg,
|
| 201 |
+
label="💡 Try these examples"
|
| 202 |
)
|
| 203 |
|
| 204 |
# 事件处理
|
| 205 |
+
msg.submit(chat_interface, [msg, chatbot, max_tokens, temperature, top_p], [chatbot, msg])
|
| 206 |
+
send_btn.click(chat_interface, [msg, chatbot, max_tokens, temperature, top_p], [chatbot, msg])
|
| 207 |
+
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
| 210 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
|
@@ -5,3 +5,5 @@ peft==0.7.1
|
|
| 5 |
bitsandbytes==0.41.3
|
| 6 |
accelerate==0.24.1
|
| 7 |
scipy==1.11.4
|
|
|
|
|
|
|
|
|
| 5 |
bitsandbytes==0.41.3
|
| 6 |
accelerate==0.24.1
|
| 7 |
scipy==1.11.4
|
| 8 |
+
sentencepiece
|
| 9 |
+
protobuf
|