File size: 15,104 Bytes
92ef79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gradio as gr
from loguru import logger
from gradio_llm_interface import GradioLlmInterface
from config import GRADIO_MESSAGE_MODES, MODE_CONFIG
import openai
import os
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Speech-to-text function using OpenAI Whisper
def audio_to_text(audio):
    if audio is None:
        return "No audio file provided."
    
    try:
        # Get OpenAI API key from environment variable
        openai_api_key = os.getenv("OPENAI_API_KEY")
        if not openai_api_key:
            return "Error: OpenAI API key not found. Please set OPENAI_API_KEY environment variable."
        
        # Initialize OpenAI client
        client = openai.OpenAI(api_key=openai_api_key)
        
        # Open and transcribe the audio file
        with open(audio, "rb") as audio_file:
            transcript = client.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file
            )
        
        return transcript.text
        
    except FileNotFoundError:
        return "Error: Audio file not found."
    except openai.AuthenticationError:
        return "Error: Invalid OpenAI API key."
    except openai.RateLimitError:
        return "Error: OpenAI API rate limit exceeded."
    except Exception as e:
        logger.error(f"Speech-to-text error: {str(e)}")
        return f"Error during speech recognition: {str(e)}"

def main():
    gradio_ros_interface = GradioLlmInterface()

    title_markdown = ("""

    # πŸŒ‹ DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models

    [[Project Page](https://wyd0817.github.io/project-dart-llm/)] [[Code](https://github.com/wyd0817/gradio_gpt_interface)] [[Model](https://artificialanalysis.ai/)] | πŸ“š [[RoboQA](https://www.overleaf.com/project/6614a987ae2994cae02efcb2)] 

    """)

    with gr.Blocks(css="""

        #text-input, #audio-input {

            height: 100px; /* Unified height */

            max-height: 100px;

            width: 100%; /* Full container width */

            margin: 0;

        }

        .input-container {

            display: flex; /* Flex layout */

            gap: 10px; /* Spacing */

            align-items: center; /* Vertical alignment */

        }

        #voice-input-container {

            display: flex;

            align-items: center;

            gap: 15px;

            margin: 15px 0;

            padding: 15px;

            background: linear-gradient(135deg, #ffeef8 0%, #fff5f5 100%);

            border-radius: 20px;

            border: 1px solid #ffe4e6;

        }

        #voice-btn {

            width: 50px !important;

            height: 50px !important;

            border-radius: 50% !important;

            font-size: 20px !important;

            background: linear-gradient(135deg, #ff6b9d 0%, #c44569 100%) !important;

            color: white !important;

            border: none !important;

            box-shadow: 0 4px 15px rgba(255, 107, 157, 0.3) !important;

            transition: all 0.3s ease !important;

        }

        #voice-btn:hover {

            transform: scale(1.05) !important;

            box-shadow: 0 6px 20px rgba(255, 107, 157, 0.4) !important;

        }

        #voice-btn:active {

            transform: scale(0.95) !important;

        }

        .voice-recording {

            background: linear-gradient(135deg, #ff4757 0%, #ff3742 100%) !important;

            animation: pulse 1.5s infinite !important;

        }

        @keyframes pulse {

            0% { box-shadow: 0 4px 15px rgba(255, 71, 87, 0.3); }

            50% { box-shadow: 0 4px 25px rgba(255, 71, 87, 0.6); }

            100% { box-shadow: 0 4px 15px rgba(255, 71, 87, 0.3); }

        }

        #voice-status {

            color: #ff6b9d;

            font-size: 14px;

            font-weight: 500;

            text-align: center;

            margin-top: 10px;

        }

        /* Enhanced layout for left-right split */

        .gradio-container .gradio-row {

            gap: 20px; /* Add spacing between columns */

        }

        .gradio-column {

            padding: 10px;

            border-radius: 8px;

            background-color: var(--panel-background-fill);

        }

        /* Chat interface styling */

        .chat-column {

            border: 1px solid var(--border-color-primary);

        }

        /* DAG visualization column styling */

        .dag-column {

            border: 1px solid var(--border-color-primary);

        }

    """) as demo:
        gr.Markdown(title_markdown)

        mode_choices = [MODE_CONFIG[mode]["display_name"] for mode in GRADIO_MESSAGE_MODES]
        mode_selector = gr.Radio(choices=mode_choices, label="Backend model", value=mode_choices[0])
        clear_button = gr.Button("Clear Chat")

        logger.info("Starting Gradio GPT Interface...")
        
        initial_mode = GRADIO_MESSAGE_MODES[0]
        
        def update_mode(selected_mode, state):
            mode_key = [key for key, value in MODE_CONFIG.items() if value["display_name"] == selected_mode][0]
            return gradio_ros_interface.update_chatbot(mode_key, state)

        # Main content area with left-right layout
        with gr.Row():
            # Left column: Chat interface
            with gr.Column(scale=1, elem_classes=["chat-column"]):
                gr.Markdown("### πŸ€– DART-LLM Chat Interface")
                # Create chatbot component in the left column
                chatbot_container = gr.Chatbot(label="DART-LLM", type="messages")
                
                # Initialize the interface and get state data
                state_data = gradio_ros_interface.initialize_interface(initial_mode)
                state = gr.State(state_data)
                
                # Add input area in the left column
                with gr.Row(elem_id="input-container"):
                    txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", elem_id="text-input", container=False)
                    
                with gr.Row(elem_id="voice-input-container"):
                    with gr.Column(scale=4):
                        # Hidden audio component
                        audio_input = gr.Audio(
                            sources=["microphone"], 
                            type="filepath", 
                            elem_id="audio-input", 
                            show_label=False,
                            interactive=True,
                            streaming=False,
                            visible=False
                        )
                        # Voice input status display
                        voice_status = gr.Markdown("", elem_id="voice-status", visible=False)
                        
                    with gr.Column(scale=1, min_width=80):
                        # Main voice button
                        voice_btn = gr.Button(
                            "πŸŽ™οΈ", 
                            elem_id="voice-btn", 
                            variant="secondary",
                            size="sm",
                            scale=1
                        )
                
                # Example prompts in the left column
                gr.Examples(
                    examples=[
                        "Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle",
                        "Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading."
                    ], 
                    inputs=txt
                )
                
            # Right column: DAG visualization and controls
            with gr.Column(scale=1, elem_classes=["dag-column"]):
                gr.Markdown("### πŸ“Š Task Dependency Visualization")
                # DAG visualization display
                dag_image = gr.Image(label="Task Dependency Graph", visible=True, height=600)
                
                # Task plan editing section
                task_editor = gr.Code(
                    label="Task Plan JSON Editor",
                    language="json",
                    visible=False,
                    lines=15,
                    interactive=True
                )
                
                # Control buttons section
                with gr.Row():
                    with gr.Column(scale=2):
                        deployment_status = gr.Markdown("", visible=True)
                    with gr.Column(scale=1):
                        with gr.Row():
                            edit_task_btn = gr.Button(
                                "πŸ“ Edit Task Plan",
                                variant="secondary",
                                visible=False,
                                size="sm"
                            )
                            update_dag_btn = gr.Button(
                                "πŸ”„ Update DAG Visualization", 
                                variant="secondary",
                                visible=False,
                                size="sm"
                            )
                            validate_deploy_btn = gr.Button(
                                "πŸ”’ Validate & Deploy Task Plan", 
                                variant="primary", 
                                visible=False,
                                size="sm"
                            )
        
        mode_selector.change(update_mode, inputs=[mode_selector, state], outputs=[chatbot_container, state])
        clear_button.click(gradio_ros_interface.clear_chat, inputs=[state], outputs=[chatbot_container])

        # Handle text input submission
        async def handle_text_submit(text, state):
            messages, state, dag_image_path, validate_btn_update = await gradio_ros_interface.predict(text, state)
            # Show edit button when task plan is generated
            edit_btn_visible = validate_btn_update.get('visible', False)
            return (
                "",  # Clear the text input after submission
                messages, 
                state, 
                dag_image_path, 
                validate_btn_update,
                gr.update(visible=edit_btn_visible)  # Show edit button
            )
        
        txt.submit(handle_text_submit, [txt, state], [txt, chatbot_container, state, dag_image, validate_deploy_btn, edit_task_btn])

        # Voice input state management
        voice_recording = gr.State(False)
        
        # Voice button click handler
        def handle_voice_input(audio, is_recording):
            logger.info(f"Voice button clicked, current recording state: {is_recording}")
            
            if not is_recording:
                # Start recording state
                logger.info("Starting recording...")
                return (
                    gr.update(value="πŸ”΄", elem_classes=["voice-recording"]),  # Change button style
                    "πŸ’¬ Recording in progress...",  # Status message
                    gr.update(visible=True),  # Show status
                    gr.update(visible=True),  # Show audio component
                    True,  # Update recording state
                    ""     # Clear text box
                )
            else:
                # Stop recording and transcribe
                logger.info("Stopping recording, starting transcription...")
                if audio is not None and audio != "":
                    try:
                        text = audio_to_text(audio)
                        logger.info(f"Transcription completed: {text}")
                        return (
                            gr.update(value="πŸŽ™οΈ", elem_classes=[]),  # Restore button style
                            "✨ Transcription completed!",  # Success message
                            gr.update(visible=True),   # Show status
                            gr.update(visible=False),  # Hide audio component
                            False,  # Reset recording state
                            text    # Fill in transcribed text
                        )
                    except Exception as e:
                        logger.error(f"Transcription error: {e}")
                        return (
                            gr.update(value="πŸŽ™οΈ", elem_classes=[]),  # Restore button style
                            f"❌ Transcription failed: {str(e)}",
                            gr.update(visible=True),
                            gr.update(visible=False),
                            False,
                            ""
                        )
                else:
                    logger.warning("No audio detected")
                    return (
                        gr.update(value="πŸŽ™οΈ", elem_classes=[]),  # Restore button style
                        "⚠️ No audio detected, please record again",
                        gr.update(visible=True),
                        gr.update(visible=False),
                        False,
                        ""
                    )

        # Voice button event handling
        voice_btn.click(
            handle_voice_input,
            inputs=[audio_input, voice_recording],
            outputs=[voice_btn, voice_status, voice_status, audio_input, voice_recording, txt]
        )
        
        # Audio state change listener - automatic prompt
        def on_audio_change(audio):
            if audio is not None:
                logger.info("Audio file detected")
                return "🎡 Audio detected, you can click the button to complete transcription"
            return ""
        
        audio_input.change(
            on_audio_change,
            inputs=[audio_input],
            outputs=[voice_status]
        )
        
        # Handle task plan editing
        edit_task_btn.click(
            gradio_ros_interface.show_task_plan_editor,
            inputs=[state],
            outputs=[task_editor, update_dag_btn, validate_deploy_btn, deployment_status]
        )
        
        # Handle DAG update from editor
        update_dag_btn.click(
            gradio_ros_interface.update_dag_from_editor,
            inputs=[task_editor, state],
            outputs=[dag_image, validate_deploy_btn, task_editor, update_dag_btn, deployment_status, state]
        )
        
        # Handle validation and deployment
        validate_deploy_btn.click(
            gradio_ros_interface.validate_and_deploy_task_plan, 
            inputs=[state], 
            outputs=[deployment_status, dag_image, validate_deploy_btn, state]
        )

    demo.launch(server_port=8080, share=True)

if __name__ == "__main__":
    main()