File size: 13,516 Bytes
9ffc795
 
 
 
a1f2008
a4f228c
a1f2008
9ffc795
 
 
 
 
 
 
 
a4f228c
 
 
9ffc795
 
 
 
b4ebf95
792bd1c
 
 
a4f228c
 
 
792bd1c
 
 
a4f228c
 
 
792bd1c
 
 
a4f228c
 
 
792bd1c
 
 
 
9ffc795
 
a4f228c
9ffc795
792bd1c
9ffc795
 
a4f228c
 
 
792bd1c
a4f228c
792bd1c
9ffc795
792bd1c
9ffc795
 
792bd1c
9ffc795
a4f228c
 
9ffc795
a4f228c
9ffc795
 
 
 
 
 
792bd1c
9ffc795
 
 
 
a4f228c
 
 
9ffc795
792bd1c
a4f228c
 
9ffc795
792bd1c
a4f228c
792bd1c
a4f228c
 
792bd1c
 
a4f228c
9ffc795
 
a4f228c
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffc795
 
a4f228c
 
9ffc795
 
b4ebf95
9ffc795
 
a1f2008
a4f228c
 
 
a1f2008
 
 
 
 
 
 
 
 
 
 
a4f228c
 
 
 
 
 
 
 
 
 
 
a1f2008
 
 
 
 
 
 
 
a4f228c
a1f2008
 
a4f228c
a1f2008
9ffc795
792bd1c
a4f228c
 
9ffc795
 
a4f228c
 
9ffc795
a4f228c
 
9ffc795
 
9720765
5778229
 
9720765
 
9ffc795
a4f228c
 
 
 
 
 
 
 
 
 
9ffc795
a4f228c
 
9ffc795
a4f228c
 
a1f2008
a4f228c
9ffc795
 
a4f228c
9ffc795
792bd1c
9ffc795
 
a4f228c
9ffc795
 
 
a4f228c
9ffc795
a4f228c
9ffc795
 
 
a4f228c
9ffc795
a4f228c
9ffc795
 
 
792bd1c
9ffc795
 
 
 
 
 
 
 
 
792bd1c
 
b4ebf95
9ffc795
a4f228c
 
 
9ffc795
a4f228c
b4ebf95
a4f228c
 
 
 
9ffc795
a4f228c
 
 
 
9ffc795
 
 
 
 
a4f228c
9ffc795
 
a4f228c
9ffc795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f228c
 
 
 
 
 
 
 
 
9ffc795
 
 
792bd1c
 
 
 
 
 
 
 
9ffc795
 
1f6f70b
 
9ffc795
 
 
 
 
 
 
 
 
 
792bd1c
 
 
9ffc795
 
 
 
6158c62
0b315c1
 
 
 
 
 
6158c62
9ffc795
6158c62
9ffc795
 
 
 
 
792bd1c
a4f228c
9ffc795
 
 
 
792bd1c
a4f228c
9ffc795
 
 
a4f228c
 
9ffc795
 
 
 
 
 
 
 
0b315c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import gradio as gr
import spaces  # Import spaces module for ZeroGPU
from huggingface_hub import login
import os
from json_processor import JsonProcessor
from dag_visualizer import DAGVisualizer
import json

# 1) Read Secrets
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
    raise RuntimeError("❌ HUGGINGFACE_TOKEN not detected, please check Space Settings β†’ Secrets")
# 2) Login to ensure all subsequent from_pretrained calls have proper permissions
login(hf_token)

from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import warnings
import os
warnings.filterwarnings("ignore")

# Model configurations for GGUF models
MODEL_CONFIGS = {
    "1B": {
        "name": "Dart-llm-model-1B",
        "base_model": "meta-llama/Llama-3.2-1B",  # For tokenizer
        "gguf_model": "YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf",
        "gguf_file": "llama_3.2_1b-lora-qlora-dart-llm_q5_k_m.gguf"
    },
    "3B": {
        "name": "Dart-llm-model-3B",
        "base_model": "meta-llama/Llama-3.2-3B",  # For tokenizer
        "gguf_model": "YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf",
        "gguf_file": "llama_3.2_3b-lora-qlora-dart-llm_q4_k_m.gguf"
    },
    "8B": {
        "name": "Dart-llm-model-8B",
        "base_model": "meta-llama/Llama-3.1-8B",  # For tokenizer
        "gguf_model": "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf",
        "gguf_file": "llama3.1-8b-lora-qlora-dart-llm_q4_k_m_fp16.gguf"
    }
}

DEFAULT_MODEL = "1B"  # Set 1B as default

# Global variables to store model and tokenizer
llm_model = None
tokenizer = None
current_model_config = None
model_loaded = False

# Initialize DAG visualizer
dag_visualizer = DAGVisualizer()

def load_model_and_tokenizer(selected_model=DEFAULT_MODEL):
    """Load tokenizer - executed on CPU"""
    global tokenizer, model_loaded, current_model_config
    
    if model_loaded and current_model_config == selected_model:
        return
    
    print(f"πŸ”„ Loading tokenizer for {MODEL_CONFIGS[selected_model]['name']}...")
    
    # Load tokenizer from base model
    base_model = MODEL_CONFIGS[selected_model]["base_model"]
    tokenizer = AutoTokenizer.from_pretrained(
        base_model, 
        use_fast=False,
        trust_remote_code=True
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    current_model_config = selected_model
    model_loaded = True
    print("βœ… Tokenizer loaded successfully!")

@spaces.GPU(duration=60)  # Request GPU for loading model at startup
def load_gguf_model_on_gpu(selected_model=DEFAULT_MODEL):
    """Load GGUF model using llama-cpp-python"""
    global llm_model
    
    # If model is already loaded and it's the same model, return it
    if llm_model is not None and current_model_config == selected_model:
        return llm_model
    
    # Clear existing model if switching
    if llm_model is not None:
        print("πŸ—‘οΈ Clearing existing model from GPU...")
        del llm_model
        llm_model = None
    
    model_config = MODEL_CONFIGS[selected_model]
    print(f"πŸ”„ Loading {model_config['name']} GGUF model...")
    
    try:
        # Download GGUF model file from HuggingFace Hub
        model_file = hf_hub_download(
            repo_id=model_config["gguf_model"],
            filename=model_config["gguf_file"],
            cache_dir="./gguf_cache"
        )
        print(f"πŸ“¦ Downloaded GGUF file: {model_file}")
        
        # Load GGUF model with llama-cpp-python
        llm_model = Llama(
            model_path=model_file,
            n_ctx=2048,  # Context length
            n_gpu_layers=-1,  # Use all GPU layers if available
            verbose=False
        )
        
        print(f"βœ… {model_config['name']} GGUF model loaded successfully!")
        return llm_model
        
    except Exception as load_error:
        print(f"❌ GGUF Model loading failed: {load_error}")
        raise load_error

def process_json_in_response(response):
    """Process and format JSON content in the response, and generate DAG visualization"""
    dag_image_path = None
    
    try:
        # Check if response contains JSON-like content
        if '{' in response and '}' in response:
            processor = JsonProcessor()
            
            # Try to process the response for JSON content
            processed_json = processor.process_response(response)
            
            if processed_json:
                # Format the JSON nicely
                formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False)
                
                # Generate DAG visualization if the JSON contains tasks
                if "tasks" in processed_json and processed_json["tasks"]:
                    try:
                        dag_image_path = dag_visualizer.create_dag_visualization(
                            processed_json, 
                            title="Robot Task Dependency Graph"
                        )
                    except Exception as e:
                        print(f"DAG visualization failed: {e}")
                
                # Replace the JSON part in the response
                import re
                json_pattern = r'\{.*\}'
                match = re.search(json_pattern, response, re.DOTALL)
                if match:
                    # Replace the matched JSON with the formatted version
                    response = response.replace(match.group(), formatted_json)
            
        return response, dag_image_path
    except Exception:
        # If processing fails, return original response
        return response, None

@spaces.GPU(duration=60)  # GPU inference
def generate_response_gpu(prompt, max_tokens=512, selected_model=DEFAULT_MODEL):
    """Generate response using GGUF model - executed on GPU"""
    global llm_model
    
    # Ensure model is loaded on GPU
    if llm_model is None or current_model_config != selected_model:
        llm_model = load_gguf_model_on_gpu(selected_model)
    
    if llm_model is None:
        return ("❌ GGUF Model failed to load. Please check the Space logs.", None)
    
    try:
        formatted_prompt = (
            "### Instruction:\n"
            f"{prompt.strip()}\n\n"
            "### Response:\n"
        )
        
        # Generate response using llama-cpp-python
        output = llm_model(
            formatted_prompt,
            max_tokens=max_tokens,
            stop=["### Instruction:", "###"],
            echo=False,
            temperature=0.1,
            top_p=0.9,
            repeat_penalty=1.1
        )
        
        # Extract the generated text
        response = output['choices'][0]['text'].strip()
        
        # Process JSON if present in response and generate DAG
        response, dag_image_path = process_json_in_response(response)
        
        return (response if response else "❌ No response generated. Please try again with a different prompt.", dag_image_path)
    
    except Exception as generation_error:
        return (f"❌ Generation Error: {str(generation_error)}", None)

def chat_interface(message, history, max_tokens, selected_model):
    """Chat interface - runs on CPU, calls GPU functions"""
    if not message.strip():
        return history, "", None
    
    try:
        # Call GPU function to generate response
        response, dag_image_path = generate_response_gpu(message, max_tokens, selected_model)
        history.append((message, response))
        return history, "", dag_image_path
    except Exception as chat_error:
        error_msg = f"❌ Chat Error: {str(chat_error)}"
        history.append((message, error_msg))
        return history, "", None

# GGUF models include tokenizer, no separate loading needed

# Create Gradio application
with gr.Blocks(
    title="Robot Task Planning - DART-LLM Multi-Model",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1200px;
        margin: auto;
    }
    """
) as app:
    gr.Markdown("""
    # πŸ€– DART-LLM Multi-Model - Robot Task Planning
    
    Choose from **three GGUF quantized models** specialized for **robot task planning** using QLoRA fine-tuning:
    
    - **πŸš€ Dart-llm-model-1B** (Default): Fastest inference, Q5_K_M quantization
    - **βš–οΈ Dart-llm-model-3B**: Balanced performance, Q4_K_M quantization
    - **🎯 Dart-llm-model-8B**: Best quality output, Q4_K_M quantization
    
    **GGUF Implementation**: Uses native GGUF format with llama-cpp-python for optimal memory efficiency and GPU acceleration.
    
    **Capabilities**: 
    - Convert natural language robot commands into structured task sequences
    - **NEW: Automatic DAG Visualization** - Generates visual dependency graphs for robot task sequences
    - Support for excavators, dump trucks, and other construction robots
    
    **GGUF Models**: 
    - [YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf) (Default - Q5_K_M)
    - [YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf) (Q4_K_M)
    - [YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf) (Q4_K_M)
    
    ⚑ **Using ZeroGPU**: This Space uses dynamic GPU allocation (Nvidia H200). First generation might take a bit longer.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                label="Task Planning Results",
                height=400,
                show_label=True,
                container=True,
                bubble_full_width=False,
                show_copy_button=True
            )
            
            msg = gr.Textbox(
                label="Robot Command",
                placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
                lines=2,
                max_lines=5,
                show_label=True,
                container=True
            )
            
            with gr.Row():
                send_btn = gr.Button("πŸš€ Generate Tasks", variant="primary", size="sm")
                clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", size="sm")
        
        with gr.Column(scale=2):
            dag_image = gr.Image(
                label="Task Dependency Graph (DAG)",
                show_label=True,
                container=True,
                height=400,
                interactive=False
            )
        
        with gr.Column(scale=1):
            gr.Markdown("### βš™οΈ Generation Settings")
            
            model_selector = gr.Dropdown(
                choices=[(config["name"], key) for key, config in MODEL_CONFIGS.items()],
                value=DEFAULT_MODEL,
                label="Model Size",
                info="Select model size (1B = fastest, 8B = best quality)",
                interactive=True
            )
            
            max_tokens = gr.Slider(
                minimum=50,
                maximum=5000,
                value=512,
                step=10,
                label="Max Tokens",
                info="Maximum number of tokens to generate"
            )
            
            gr.Markdown("""
            ### πŸ“Š Model Status
            - **Hardware**: ZeroGPU (Dynamic Nvidia H200)
            - **Status**: Ready
            - **Note**: First generation allocates GPU resources
            - **Dart-llm-model-1B**: Fastest inference (Default)
            - **Dart-llm-model-3B**: Balanced speed/quality
            - **Dart-llm-model-8B**: Best quality, slower
            """)
    
    # Example conversations
    gr.Examples(
        examples=[
            "Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.",
            "Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.",
            "Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.",
            "Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.",
            "Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.",
            "Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.",
        ],
        inputs=msg,
        label="πŸ’‘ Example Operator Commands"
    )
    
    # Event handling
    msg.submit(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, model_selector],
        outputs=[chatbot, msg, dag_image]
    )
    
    send_btn.click(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, model_selector],
        outputs=[chatbot, msg, dag_image]
    )
    
    clear_btn.click(
        lambda: ([], "", None),
        outputs=[chatbot, msg, dag_image]
    )

if __name__ == "__main__":
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )