Yehor's picture
Clean up
eac7684
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import torch
from torch import nn
from common import Encoder, LengthRegulator, ConvAttention
from common import Invertible1x1ConvLUS, Invertible1x1Conv
from common import AffineTransformationLayer, LinearNorm, ExponentialClass
from common import get_mask_from_lengths
from attribute_prediction_model import get_attribute_prediction_model
from alignment import mas_width1 as mas
from torch_env import device
class FlowStep(nn.Module):
def __init__(
self,
n_mel_channels,
n_context_dim,
n_layers,
affine_model="simple_conv",
scaling_fn="exp",
matrix_decomposition="",
affine_activation="softplus",
use_partial_padding=False,
cache_inverse=False,
):
super(FlowStep, self).__init__()
if matrix_decomposition == "LUS":
self.invtbl_conv = Invertible1x1ConvLUS(
n_mel_channels, cache_inverse=cache_inverse
)
else:
self.invtbl_conv = Invertible1x1Conv(
n_mel_channels, cache_inverse=cache_inverse
)
self.affine_tfn = AffineTransformationLayer(
n_mel_channels,
n_context_dim,
n_layers,
affine_model=affine_model,
scaling_fn=scaling_fn,
affine_activation=affine_activation,
use_partial_padding=use_partial_padding,
)
def enable_inverse_cache(self):
self.invtbl_conv.cache_inverse = True
def forward(self, z, context, inverse=False, seq_lens=None):
if inverse: # for inference z-> mel
z = self.affine_tfn(z, context, inverse, seq_lens=seq_lens)
z = self.invtbl_conv(z, inverse)
return z
else: # training mel->z
z, log_det_W = self.invtbl_conv(z)
z, log_s = self.affine_tfn(z, context, seq_lens=seq_lens)
return z, log_det_W, log_s
class RADTTS(torch.nn.Module):
def __init__(
self,
n_speakers,
n_speaker_dim,
n_text,
n_text_dim,
n_flows,
n_conv_layers_per_step,
n_mel_channels,
n_hidden,
mel_encoder_n_hidden,
dummy_speaker_embedding,
n_early_size,
n_early_every,
n_group_size,
affine_model,
dur_model_config,
f0_model_config,
energy_model_config,
v_model_config=None,
include_modules="dec",
scaling_fn="exp",
matrix_decomposition="",
learn_alignments=False,
affine_activation="softplus",
attn_use_CTC=True,
use_speaker_emb_for_alignment=False,
use_context_lstm=False,
context_lstm_norm=None,
text_encoder_lstm_norm=None,
n_f0_dims=0,
n_energy_avg_dims=0,
context_lstm_w_f0_and_energy=True,
use_first_order_features=False,
unvoiced_bias_activation="",
ap_pred_log_f0=False,
**kwargs,
):
super(RADTTS, self).__init__()
assert n_early_size % 2 == 0
self.do_mel_descaling = kwargs.get("do_mel_descaling", True)
self.n_mel_channels = n_mel_channels
self.n_f0_dims = n_f0_dims # >= 1 to trains with f0
self.n_energy_avg_dims = n_energy_avg_dims # >= 1 trains with energy
self.decoder_use_partial_padding = kwargs.get(
"decoder_use_partial_padding", True
)
self.n_speaker_dim = n_speaker_dim
assert self.n_speaker_dim % 2 == 0
self.speaker_embedding = torch.nn.Embedding(n_speakers, self.n_speaker_dim)
self.embedding = torch.nn.Embedding(n_text, n_text_dim)
self.flows = torch.nn.ModuleList()
self.encoder = Encoder(
encoder_embedding_dim=n_text_dim,
norm_fn=nn.InstanceNorm1d,
lstm_norm_fn=text_encoder_lstm_norm,
)
self.dummy_speaker_embedding = dummy_speaker_embedding
self.learn_alignments = learn_alignments
self.affine_activation = affine_activation
self.include_modules = include_modules
self.attn_use_CTC = bool(attn_use_CTC)
self.use_speaker_emb_for_alignment = use_speaker_emb_for_alignment
self.use_context_lstm = bool(use_context_lstm)
self.context_lstm_norm = context_lstm_norm
self.context_lstm_w_f0_and_energy = context_lstm_w_f0_and_energy
self.length_regulator = LengthRegulator()
self.use_first_order_features = bool(use_first_order_features)
self.decoder_use_unvoiced_bias = kwargs.get("decoder_use_unvoiced_bias", True)
self.ap_pred_log_f0 = ap_pred_log_f0
self.ap_use_unvoiced_bias = kwargs.get("ap_use_unvoiced_bias", True)
self.attn_straight_through_estimator = kwargs.get(
"attn_straight_through_estimator", False
)
if "atn" in include_modules or "dec" in include_modules:
if self.learn_alignments:
if self.use_speaker_emb_for_alignment:
self.attention = ConvAttention(
n_mel_channels, n_text_dim + self.n_speaker_dim
)
else:
self.attention = ConvAttention(n_mel_channels, n_text_dim)
self.n_flows = n_flows
self.n_group_size = n_group_size
n_flowstep_cond_dims = (
self.n_speaker_dim
+ (n_text_dim + n_f0_dims + n_energy_avg_dims) * n_group_size
)
if self.use_context_lstm:
n_in_context_lstm = self.n_speaker_dim + n_text_dim * n_group_size
n_context_lstm_hidden = int(
(self.n_speaker_dim + n_text_dim * n_group_size) / 2
)
if self.context_lstm_w_f0_and_energy:
n_in_context_lstm = n_f0_dims + n_energy_avg_dims + n_text_dim
n_in_context_lstm *= n_group_size
n_in_context_lstm += self.n_speaker_dim
n_context_hidden = n_f0_dims + n_energy_avg_dims + n_text_dim
n_context_hidden = n_context_hidden * n_group_size / 2
n_context_hidden = self.n_speaker_dim + n_context_hidden
n_context_hidden = int(n_context_hidden)
n_flowstep_cond_dims = (
self.n_speaker_dim + n_text_dim * n_group_size
)
self.context_lstm = torch.nn.LSTM(
input_size=n_in_context_lstm,
hidden_size=n_context_lstm_hidden,
num_layers=1,
batch_first=True,
bidirectional=True,
)
if context_lstm_norm is not None:
if "spectral" in context_lstm_norm:
print("Applying spectral norm to context encoder LSTM")
lstm_norm_fn_pntr = (
torch.nn.utils.parametrizations.spectral_norm
)
elif "weight" in context_lstm_norm:
print("Applying weight norm to context encoder LSTM")
lstm_norm_fn_pntr = torch.nn.utils.parametrizations.weight_norm
self.context_lstm = lstm_norm_fn_pntr(
self.context_lstm, "weight_hh_l0"
)
self.context_lstm = lstm_norm_fn_pntr(
self.context_lstm, "weight_hh_l0_reverse"
)
if self.n_group_size > 1:
self.unfold_params = {
"kernel_size": (n_group_size, 1),
"stride": n_group_size,
"padding": 0,
"dilation": 1,
}
self.unfold = nn.Unfold(**self.unfold_params)
self.exit_steps = []
self.n_early_size = n_early_size
n_mel_channels = n_mel_channels * n_group_size
for i in range(self.n_flows):
if i > 0 and i % n_early_every == 0: # early exitting
n_mel_channels -= self.n_early_size
self.exit_steps.append(i)
self.flows.append(
FlowStep(
n_mel_channels,
n_flowstep_cond_dims,
n_conv_layers_per_step,
affine_model,
scaling_fn,
matrix_decomposition,
affine_activation=affine_activation,
use_partial_padding=self.decoder_use_partial_padding,
)
)
if "dpm" in include_modules:
dur_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
self.dur_pred_layer = get_attribute_prediction_model(dur_model_config)
self.use_unvoiced_bias = False
self.use_vpred_module = False
self.ap_use_voiced_embeddings = kwargs.get("ap_use_voiced_embeddings", True)
if self.decoder_use_unvoiced_bias or self.ap_use_unvoiced_bias:
assert unvoiced_bias_activation in {"relu", "exp"}
self.use_unvoiced_bias = True
if unvoiced_bias_activation == "relu":
unvbias_nonlin = nn.ReLU()
elif unvoiced_bias_activation == "exp":
unvbias_nonlin = ExponentialClass()
else:
exit(1) # we won't reach here anyway due to the assertion
self.unvoiced_bias_module = nn.Sequential(
LinearNorm(n_text_dim, 1), unvbias_nonlin
)
# all situations in which the vpred module is necessary
if (
self.ap_use_voiced_embeddings
or self.use_unvoiced_bias
or "vpred" in include_modules
):
self.use_vpred_module = True
if self.use_vpred_module:
v_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
self.v_pred_module = get_attribute_prediction_model(v_model_config)
# 4 embeddings, first two are scales, second two are biases
if self.ap_use_voiced_embeddings:
self.v_embeddings = torch.nn.Embedding(4, n_text_dim)
if "apm" in include_modules:
f0_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
energy_model_config["hparams"]["n_speaker_dim"] = n_speaker_dim
if self.use_first_order_features:
f0_model_config["hparams"]["n_in_dim"] = 2
energy_model_config["hparams"]["n_in_dim"] = 2
if (
"spline_flow_params" in f0_model_config["hparams"]
and f0_model_config["hparams"]["spline_flow_params"] is not None
):
f0_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = 2
if (
"spline_flow_params" in energy_model_config["hparams"]
and energy_model_config["hparams"]["spline_flow_params"] is not None
):
energy_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = 2
else:
if (
"spline_flow_params" in f0_model_config["hparams"]
and f0_model_config["hparams"]["spline_flow_params"] is not None
):
f0_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = f0_model_config["hparams"]["n_in_dim"]
if (
"spline_flow_params" in energy_model_config["hparams"]
and energy_model_config["hparams"]["spline_flow_params"] is not None
):
energy_model_config["hparams"]["spline_flow_params"][
"n_in_channels"
] = energy_model_config["hparams"]["n_in_dim"]
self.f0_pred_module = get_attribute_prediction_model(f0_model_config)
self.energy_pred_module = get_attribute_prediction_model(
energy_model_config
)
def is_attribute_unconditional(self):
"""
returns true if the decoder is conditioned on neither energy nor F0
"""
return self.n_f0_dims == 0 and self.n_energy_avg_dims == 0
def encode_speaker(self, spk_ids):
spk_ids = spk_ids * 0 if self.dummy_speaker_embedding else spk_ids
spk_vecs = self.speaker_embedding(spk_ids)
return spk_vecs
def encode_text(self, text, in_lens):
# text_embeddings: b x len_text x n_text_dim
text_embeddings = self.embedding(text).transpose(1, 2)
# text_enc: b x n_text_dim x encoder_dim (512)
if in_lens is None:
text_enc = self.encoder.infer(text_embeddings).transpose(1, 2)
else:
text_enc = self.encoder(text_embeddings, in_lens).transpose(1, 2)
return text_enc, text_embeddings
def preprocess_context(
self, context, speaker_vecs, out_lens=None, f0=None, energy_avg=None
):
if self.n_group_size > 1:
# unfolding zero-padded values
context = self.unfold(context.unsqueeze(-1))
if f0 is not None:
f0 = self.unfold(f0[:, None, :, None])
if energy_avg is not None:
energy_avg = self.unfold(energy_avg[:, None, :, None])
speaker_vecs = speaker_vecs[..., None].expand(-1, -1, context.shape[2])
context_w_spkvec = torch.cat((context, speaker_vecs), 1)
if self.use_context_lstm:
if self.context_lstm_w_f0_and_energy:
if f0 is not None:
context_w_spkvec = torch.cat((context_w_spkvec, f0), 1)
if energy_avg is not None:
context_w_spkvec = torch.cat((context_w_spkvec, energy_avg), 1)
unfolded_out_lens = (out_lens // self.n_group_size).long().cpu()
unfolded_out_lens_packed = nn.utils.rnn.pack_padded_sequence(
context_w_spkvec.transpose(1, 2),
unfolded_out_lens,
batch_first=True,
enforce_sorted=False,
)
self.context_lstm.flatten_parameters()
context_lstm_packed_output, _ = self.context_lstm(unfolded_out_lens_packed)
context_lstm_padded_output, _ = nn.utils.rnn.pad_packed_sequence(
context_lstm_packed_output, batch_first=True
)
context_w_spkvec = context_lstm_padded_output.transpose(1, 2)
if not self.context_lstm_w_f0_and_energy:
if f0 is not None:
context_w_spkvec = torch.cat((context_w_spkvec, f0), 1)
if energy_avg is not None:
context_w_spkvec = torch.cat((context_w_spkvec, energy_avg), 1)
return context_w_spkvec
def enable_inverse_cache(self):
for flow_step in self.flows:
flow_step.enable_inverse_cache()
def fold(self, mel):
"""Inverse of the self.unfold(mel.unsqueeze(-1)) operation used for the
grouping or "squeeze" operation on input
Args:
mel: B x C x T tensor of temporal data
"""
mel = nn.functional.fold(
mel, output_size=(mel.shape[2] * self.n_group_size, 1), **self.unfold_params
).squeeze(-1)
return mel
def binarize_attention(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS. These will
no longer recieve a gradient
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
b_size = attn.shape[0]
with torch.no_grad():
attn_cpu = attn.data.cpu().numpy()
attn_out = torch.zeros_like(attn)
for ind in range(b_size):
hard_attn = mas(attn_cpu[ind, 0, : out_lens[ind], : in_lens[ind]])
attn_out[ind, 0, : out_lens[ind], : in_lens[ind]] = torch.tensor(
hard_attn, device=attn.get_device()
)
return attn_out
def get_first_order_features(self, feats, out_lens, dilation=1):
"""
feats: b x max_length
out_lens: b-dim
"""
# add an extra column
feats_extended_R = torch.cat(
(feats, torch.zeros_like(feats[:, 0:dilation])), dim=1
)
feats_extended_L = torch.cat(
(torch.zeros_like(feats[:, 0:dilation]), feats), dim=1
)
dfeats_R = feats_extended_R[:, dilation:] - feats
dfeats_L = feats - feats_extended_L[:, 0:-dilation]
return (dfeats_R + dfeats_L) * 0.5
def apply_voice_mask_to_text(self, text_enc, voiced_mask):
"""
text_enc: b x C x N
voiced_mask: b x N
"""
voiced_mask = voiced_mask.unsqueeze(1)
voiced_embedding_s = self.v_embeddings.weight[0:1, :, None]
unvoiced_embedding_s = self.v_embeddings.weight[1:2, :, None]
voiced_embedding_b = self.v_embeddings.weight[2:3, :, None]
unvoiced_embedding_b = self.v_embeddings.weight[3:4, :, None]
scale = torch.sigmoid(
voiced_embedding_s * voiced_mask + unvoiced_embedding_s * (1 - voiced_mask)
)
bias = 0.1 * torch.tanh(
voiced_embedding_b * voiced_mask + unvoiced_embedding_b * (1 - voiced_mask)
)
return text_enc * scale + bias
def forward(
self,
mel,
speaker_ids,
text,
in_lens,
out_lens,
binarize_attention=False,
attn_prior=None,
f0=None,
energy_avg=None,
voiced_mask=None,
p_voiced=None,
):
speaker_vecs = self.encode_speaker(speaker_ids)
text_enc, text_embeddings = self.encode_text(text, in_lens)
log_s_list, log_det_W_list, z_mel = [], [], []
attn = None
attn_soft = None
attn_hard = None
if "atn" in self.include_modules or "dec" in self.include_modules:
# make sure to do the alignments before folding
attn_mask = get_mask_from_lengths(in_lens)[..., None] == 0
text_embeddings_for_attn = text_embeddings
if self.use_speaker_emb_for_alignment:
speaker_vecs_expd = speaker_vecs[:, :, None].expand(
-1, -1, text_embeddings.shape[2]
)
text_embeddings_for_attn = torch.cat(
(text_embeddings_for_attn, speaker_vecs_expd.detach()), 1
)
# attn_mask shld be 1 for unsd t-steps in text_enc_w_spkvec tensor
attn_soft, attn_logprob = self.attention(
mel,
text_embeddings_for_attn,
out_lens,
attn_mask,
key_lens=in_lens,
attn_prior=attn_prior,
)
if binarize_attention:
attn = self.binarize_attention(attn_soft, in_lens, out_lens)
attn_hard = attn
if self.attn_straight_through_estimator:
attn_hard = attn_soft + (attn_hard - attn_soft).detach()
else:
attn = attn_soft
context = torch.bmm(text_enc, attn.squeeze(1).transpose(1, 2))
f0_bias = 0
# unvoiced bias forward pass
if self.use_unvoiced_bias:
f0_bias = self.unvoiced_bias_module(context.permute(0, 2, 1))
f0_bias = -f0_bias[..., 0]
f0_bias = f0_bias * (~voiced_mask.bool()).float()
# mel decoder forward pass
if "dec" in self.include_modules:
if self.n_group_size > 1:
# might truncate some frames at the end, but that's ok
# sometimes referred to as the "squeeeze" operation
# invert this by calling self.fold(mel_or_z)
mel = self.unfold(mel.unsqueeze(-1))
z_out = []
# where context is folded
# mask f0 in case values are interpolated
if f0 is None:
f0_aug = None
else:
if self.decoder_use_unvoiced_bias:
f0_aug = f0 * voiced_mask + f0_bias
else:
f0_aug = f0 * voiced_mask
context_w_spkvec = self.preprocess_context(
context, speaker_vecs, out_lens, f0_aug, energy_avg
)
log_s_list, log_det_W_list, z_out = [], [], []
unfolded_seq_lens = out_lens // self.n_group_size
for i, flow_step in enumerate(self.flows):
if i in self.exit_steps:
z = mel[:, : self.n_early_size]
z_out.append(z)
mel = mel[:, self.n_early_size :]
mel, log_det_W, log_s = flow_step(
mel, context_w_spkvec, seq_lens=unfolded_seq_lens
)
log_s_list.append(log_s)
log_det_W_list.append(log_det_W)
z_out.append(mel)
z_mel = torch.cat(z_out, 1)
# duration predictor forward pass
duration_model_outputs = None
if "dpm" in self.include_modules:
if attn_hard is None:
attn_hard = self.binarize_attention(attn_soft, in_lens, out_lens)
# convert hard attention to durations
attn_hard_reduced = attn_hard.sum(2)[:, 0, :]
duration_model_outputs = self.dur_pred_layer(
torch.detach(text_enc),
torch.detach(speaker_vecs),
torch.detach(attn_hard_reduced.float()),
in_lens,
)
# f0, energy, vpred predictors forward pass
f0_model_outputs = None
energy_model_outputs = None
vpred_model_outputs = None
if "apm" in self.include_modules:
if attn_hard is None:
attn_hard = self.binarize_attention(attn_soft, in_lens, out_lens)
# convert hard attention to durations
if binarize_attention:
text_enc_time_expanded = context.clone()
else:
text_enc_time_expanded = torch.bmm(
text_enc, attn_hard.squeeze(1).transpose(1, 2)
)
if self.use_vpred_module:
# unvoiced bias requires voiced mask prediction
vpred_model_outputs = self.v_pred_module(
torch.detach(text_enc_time_expanded),
torch.detach(speaker_vecs),
torch.detach(voiced_mask),
out_lens,
)
# affine transform context using voiced mask
if self.ap_use_voiced_embeddings:
text_enc_time_expanded = self.apply_voice_mask_to_text(
text_enc_time_expanded, voiced_mask
)
# whether to use the unvoiced bias in the attribute predictor
# circumvent in-place modification
f0_target = f0.clone()
if self.ap_use_unvoiced_bias:
f0_target = torch.detach(f0_target * voiced_mask + f0_bias)
else:
f0_target = torch.detach(f0_target)
# fit to log f0 in f0 predictor
f0_target[voiced_mask.bool()] = torch.log(f0_target[voiced_mask.bool()])
f0_target = f0_target / 6 # scale to ~ [0, 1] in log space
energy_avg = energy_avg * 2 - 1 # scale to ~ [-1, 1]
if self.use_first_order_features:
df0 = self.get_first_order_features(f0_target, out_lens)
denergy_avg = self.get_first_order_features(energy_avg, out_lens)
f0_voiced = torch.cat((f0_target[:, None], df0[:, None]), dim=1)
energy_avg = torch.cat(
(energy_avg[:, None], denergy_avg[:, None]), dim=1
)
f0_voiced = f0_voiced * 3 # scale to ~ 1 std
energy_avg = energy_avg * 3 # scale to ~ 1 std
else:
f0_voiced = f0_target * 2 # scale to ~ 1 std
energy_avg = energy_avg * 1.4 # scale to ~ 1 std
f0_model_outputs = self.f0_pred_module(
text_enc_time_expanded, torch.detach(speaker_vecs), f0_voiced, out_lens
)
energy_model_outputs = self.energy_pred_module(
text_enc_time_expanded, torch.detach(speaker_vecs), energy_avg, out_lens
)
outputs = {
"z_mel": z_mel,
"log_det_W_list": log_det_W_list,
"log_s_list": log_s_list,
"duration_model_outputs": duration_model_outputs,
"f0_model_outputs": f0_model_outputs,
"energy_model_outputs": energy_model_outputs,
"vpred_model_outputs": vpred_model_outputs,
"attn_soft": attn_soft,
"attn": attn,
"text_embeddings": text_embeddings,
"attn_logprob": attn_logprob,
}
return outputs
def infer(
self,
speaker_id,
text,
sigma,
sigma_dur=0.8,
sigma_f0=0.8,
sigma_energy=0.8,
token_dur_scaling=1.0,
token_duration_max=100,
speaker_id_text=None,
speaker_id_attributes=None,
dur=None,
f0=None,
energy_avg=None,
voiced_mask=None,
f0_mean=0.0,
f0_std=0.0,
energy_mean=0.0,
energy_std=0.0,
):
batch_size = text.shape[0]
n_tokens = text.shape[1]
spk_vec = self.encode_speaker(speaker_id)
spk_vec_text, spk_vec_attributes = spk_vec, spk_vec
if speaker_id_text is not None:
spk_vec_text = self.encode_speaker(speaker_id_text)
if speaker_id_attributes is not None:
spk_vec_attributes = self.encode_speaker(speaker_id_attributes)
txt_enc, txt_emb = self.encode_text(text, None)
if dur is None:
# get token durations
z_dur = (
torch.randn(batch_size, 1, n_tokens, dtype=torch.float32, device=device)
* sigma_dur
)
dur = self.dur_pred_layer.infer(z_dur, txt_enc, spk_vec_text)
if dur.shape[-1] < txt_enc.shape[-1]:
to_pad = txt_enc.shape[-1] - dur.shape[2]
pad_fn = nn.ReplicationPad1d((0, to_pad))
dur = pad_fn(dur)
dur = dur[:, 0]
dur = dur.clamp(0, token_duration_max)
dur = dur * token_dur_scaling if token_dur_scaling > 0 else dur
dur = (dur + 0.5).floor().int()
out_lens = dur.sum(1).long().cpu() if dur.shape[0] != 1 else [dur.sum(1)]
max_n_frames = max(out_lens)
out_lens = torch.LongTensor(out_lens).to(txt_enc.device)
# get attributes f0, energy, vpred, etc)
txt_enc_time_expanded = self.length_regulator(
txt_enc.transpose(1, 2), dur
).transpose(1, 2)
if not self.is_attribute_unconditional():
# if explicitly modeling attributes
if voiced_mask is None:
if self.use_vpred_module:
# get logits
voiced_mask = self.v_pred_module.infer(
None, txt_enc_time_expanded, spk_vec_attributes
)
voiced_mask = torch.sigmoid(voiced_mask[:, 0]) > 0.5
voiced_mask = voiced_mask.float()
ap_txt_enc_time_expanded = txt_enc_time_expanded
# voice mask augmentation only used for attribute prediction
if self.ap_use_voiced_embeddings:
ap_txt_enc_time_expanded = self.apply_voice_mask_to_text(
txt_enc_time_expanded, voiced_mask
)
f0_bias = 0
# unvoiced bias forward pass
if self.use_unvoiced_bias:
f0_bias = self.unvoiced_bias_module(
txt_enc_time_expanded.permute(0, 2, 1)
)
f0_bias = -f0_bias[..., 0]
f0_bias = f0_bias * (~voiced_mask.bool()).float()
if f0 is None:
n_f0_feature_channels = 2 if self.use_first_order_features else 1
z_f0 = (
torch.randn(
batch_size,
n_f0_feature_channels,
max_n_frames,
dtype=torch.float32,
)
* sigma_f0
).to(device)
f0 = self.infer_f0(
z_f0,
ap_txt_enc_time_expanded,
spk_vec_attributes,
voiced_mask,
out_lens,
)[:, 0]
if f0_mean > 0.0:
vmask_bool = voiced_mask.bool()
f0_mu, f0_sigma = f0[vmask_bool].mean(), f0[vmask_bool].std()
f0[vmask_bool] = (f0[vmask_bool] - f0_mu) / f0_sigma
f0_std = f0_std if f0_std > 0 else f0_sigma
f0[vmask_bool] = f0[vmask_bool] * f0_std + f0_mean
if energy_avg is None:
n_energy_feature_channels = 2 if self.use_first_order_features else 1
z_energy_avg = (
torch.randn(
batch_size,
n_energy_feature_channels,
max_n_frames,
dtype=torch.float32,
device=device,
)
* sigma_energy
)
energy_avg = self.infer_energy(
z_energy_avg, ap_txt_enc_time_expanded, spk_vec, out_lens
)[:, 0]
# replication pad, because ungrouping with different group sizes
# may lead to mismatched lengths
if energy_avg.shape[1] < out_lens[0]:
to_pad = out_lens[0] - energy_avg.shape[1]
pad_fn = nn.ReplicationPad1d((0, to_pad))
f0 = pad_fn(f0[None])[0]
energy_avg = pad_fn(energy_avg[None])[0]
if f0.shape[1] < out_lens[0]:
to_pad = out_lens[0] - f0.shape[1]
pad_fn = nn.ReplicationPad1d((0, to_pad))
f0 = pad_fn(f0[None])[0]
if self.decoder_use_unvoiced_bias:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded,
spk_vec,
out_lens,
f0 * voiced_mask + f0_bias,
energy_avg,
)
else:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded,
spk_vec,
out_lens,
f0 * voiced_mask,
energy_avg,
)
else:
context_w_spkvec = self.preprocess_context(
txt_enc_time_expanded, spk_vec, out_lens, None, None
)
residual = torch.randn(
batch_size,
80 * self.n_group_size,
max_n_frames // self.n_group_size,
dtype=torch.float32,
).to(device)
residual = residual * sigma
# map from z sample to data
exit_steps_stack = self.exit_steps.copy()
mel = residual[:, len(exit_steps_stack) * self.n_early_size :]
remaining_residual = residual[:, : len(exit_steps_stack) * self.n_early_size]
unfolded_seq_lens = out_lens // self.n_group_size
for i, flow_step in enumerate(reversed(self.flows)):
curr_step = len(self.flows) - i - 1
mel = flow_step(
mel, context_w_spkvec, inverse=True, seq_lens=unfolded_seq_lens
)
if len(exit_steps_stack) > 0 and curr_step == exit_steps_stack[-1]:
# concatenate the next chunk of z
exit_steps_stack.pop()
residual_to_add = remaining_residual[
:, len(exit_steps_stack) * self.n_early_size :
]
remaining_residual = remaining_residual[
:, : len(exit_steps_stack) * self.n_early_size
]
mel = torch.cat((residual_to_add, mel), 1)
if self.n_group_size > 1:
mel = self.fold(mel)
if self.do_mel_descaling:
mel = mel * 2 - 5.5
return {
"mel": mel,
"dur": dur,
"f0": f0,
"energy_avg": energy_avg,
"voiced_mask": voiced_mask,
}
def infer_f0(
self, residual, txt_enc_time_expanded, spk_vec, voiced_mask=None, lens=None
):
f0 = self.f0_pred_module.infer(residual, txt_enc_time_expanded, spk_vec, lens)
if voiced_mask is not None and len(voiced_mask.shape) == 2:
voiced_mask = voiced_mask[:, None]
# constants
if self.ap_pred_log_f0:
if self.use_first_order_features:
f0 = f0[:, 0:1, :] / 3
else:
f0 = f0 / 2
f0 = f0 * 6
else:
f0 = f0 / 6
f0 = f0 / 640
if voiced_mask is None:
voiced_mask = f0 > 0.0
else:
voiced_mask = voiced_mask.bool()
# due to grouping, f0 might be 1 frame short
voiced_mask = voiced_mask[:, :, : f0.shape[-1]]
if self.ap_pred_log_f0:
# if variable is set, decoder sees linear f0
# mask = f0 > 0.0 if voiced_mask is None else voiced_mask.bool()
f0[voiced_mask] = torch.exp(f0[voiced_mask])
f0[~voiced_mask] = 0.0
return f0
def infer_energy(self, residual, txt_enc_time_expanded, spk_vec, lens):
energy = self.energy_pred_module.infer(
residual, txt_enc_time_expanded, spk_vec, lens
)
# magic constants
if self.use_first_order_features:
energy = energy / 3
else:
energy = energy / 1.4
energy = (energy + 1) / 2
return energy
def remove_norms(self):
"""Removes spectral and weightnorms from model. Call before inference"""
for name, module in self.named_modules():
try:
nn.utils.remove_spectral_norm(module, name="weight_hh_l0")
print("Removed spectral norm from {}".format(name))
except Exception as e:
print(e)
try:
nn.utils.remove_spectral_norm(module, name="weight_hh_l0_reverse")
print("Removed spectral norm from {}".format(name))
except Exception as e:
print(e)
try:
nn.utils.remove_weight_norm(module)
print("Removed wnorm from {}".format(name))
except Exception as e:
print(e)