Spaces:
Running
Running
File size: 12,841 Bytes
b4ad1cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Original Source:
# Original Source:
# https://github.com/ndeutschmann/zunis/blob/master/zunis_lib/zunis/models/flows/coupling_cells/piecewise_coupling/piecewise_linear.py
# https://github.com/ndeutschmann/zunis/blob/master/zunis_lib/zunis/models/flows/coupling_cells/piecewise_coupling/piecewise_quadratic.py
# Modifications made to jacobian computation by Yurong You and Kevin Shih
# Original License Text:
#########################################################################
# The MIT License (MIT)
# Copyright (c) 2020, nicolas deutschmann
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import torch
import torch.nn.functional as F
third_dimension_softmax = torch.nn.Softmax(dim=2)
def piecewise_linear_transform(
x, q_tilde, compute_jacobian=True, outlier_passthru=True
):
"""Apply an element-wise piecewise-linear transformation to some variables
Parameters
----------
x : torch.Tensor
a tensor with shape (N,k) where N is the batch dimension while k is the
dimension of the variable space. This variable span the k-dimensional unit
hypercube
q_tilde: torch.Tensor
is a tensor with shape (N,k,b) where b is the number of bins.
This contains the un-normalized heights of the bins of the piecewise-constant PDF for dimension k,
i.e. q_tilde lives in all of R and we don't impose a constraint on their sum yet.
Normalization is imposed in this function using softmax.
compute_jacobian : bool, optional
determines whether the jacobian should be compute or None is returned
Returns
-------
tuple of torch.Tensor
pair `(y,h)`.
- `y` is a tensor with shape (N,k) living in the k-dimensional unit hypercube
- `j` is the jacobian of the transformation with shape (N,) if compute_jacobian==True, else None.
"""
logj = None
# TODO bottom-up assesment of handling the differentiability of variables
# Compute the bin width w
N, k, b = q_tilde.shape
Nx, kx = x.shape
assert N == Nx and k == kx, "Shape mismatch"
w = 1.0 / b
# Compute normalized bin heights with softmax function on bin dimension
q = 1.0 / w * third_dimension_softmax(q_tilde)
# x is in the mx-th bin: x \in [0,1],
# mx \in [[0,b-1]], so we clamp away the case x == 1
mx = torch.clamp(torch.floor(b * x), 0, b - 1).to(torch.long)
# Need special error handling because trying to index with mx
# if it contains nans will lock the GPU. (device-side assert triggered)
if torch.any(torch.isnan(mx)).item() or torch.any(mx < 0) or torch.any(mx >= b):
raise Exception("NaN detected in PWLinear bin indexing")
# We compute the output variable in-place
out = x - mx * w # alpha (element of [0.,w], the position of x in its bin
# Multiply by the slope
# q has shape (N,k,b), mxu = mx.unsqueeze(-1) has shape (N,k) with entries that are a b-index
# gather defines slope[i, j, k] = q[i, j, mxu[i, j, k]] with k taking only 0 as a value
# i.e. we say slope[i, j] = q[i, j, mx [i, j]]
slopes = torch.gather(q, 2, mx.unsqueeze(-1)).squeeze(-1)
out = out * slopes
# The jacobian is the product of the slopes in all dimensions
# Compute the integral over the left-bins.
# 1. Compute all integrals: cumulative sum of bin height * bin weight.
# We want that index i contains the cumsum *strictly to the left* so we shift by 1
# leaving the first entry null, which is achieved with a roll and assignment
q_left_integrals = torch.roll(torch.cumsum(q, 2) * w, 1, 2)
q_left_integrals[:, :, 0] = 0
# 2. Access the correct index to get the left integral of each point and add it to our transformation
out = out + torch.gather(q_left_integrals, 2, mx.unsqueeze(-1)).squeeze(-1)
# Regularization: points must be strictly within the unit hypercube
# Use the dtype information from pytorch
eps = torch.finfo(out.dtype).eps
out = out.clamp(min=eps, max=1.0 - eps)
oob_mask = torch.logical_or(x < 0.0, x > 1.0).detach().float()
if outlier_passthru:
out = out * (1 - oob_mask) + x * oob_mask
slopes = slopes * (1 - oob_mask) + oob_mask
if compute_jacobian:
# logj = torch.log(torch.prod(slopes.float(), 1))
logj = torch.sum(torch.log(slopes), 1)
del slopes
return out, logj
def piecewise_linear_inverse_transform(
y, q_tilde, compute_jacobian=True, outlier_passthru=True
):
"""
Apply inverse of an element-wise piecewise-linear transformation to some
variables
Parameters
----------
y : torch.Tensor
a tensor with shape (N,k) where N is the batch dimension while k is the
dimension of the variable space. This variable span the k-dimensional unit
hypercube
q_tilde: torch.Tensor
is a tensor with shape (N,k,b) where b is the number of bins.
This contains the un-normalized heights of the bins of the piecewise-constant PDF for dimension k,
i.e. q_tilde lives in all of R and we don't impose a constraint on their sum yet.
Normalization is imposed in this function using softmax.
compute_jacobian : bool, optional
determines whether the jacobian should be compute or None is returned
Returns
-------
tuple of torch.Tensor
pair `(x,h)`.
- `x` is a tensor with shape (N,k) living in the k-dimensional unit hypercube
- `j` is the jacobian of the transformation with shape (N,) if compute_jacobian==True, else None.
"""
# TODO bottom-up assesment of handling the differentiability of variables
# Compute the bin width w
N, k, b = q_tilde.shape
Ny, ky = y.shape
assert N == Ny and k == ky, "Shape mismatch"
w = 1.0 / b
# Compute normalized bin heights with softmax function on the bin dimension
q = 1.0 / w * third_dimension_softmax(q_tilde)
# Compute the integral over the left-bins in the forward transform.
# 1. Compute all integrals: cumulative sum of bin height * bin weight.
# We want that index i contains the cumsum *strictly to the left*,
# so we shift by 1 leaving the first entry null,
# which is achieved with a roll and assignment
q_left_integrals = torch.roll(torch.cumsum(q.float(), 2) * w, 1, 2)
q_left_integrals[:, :, 0] = 0
# Find which bin each y belongs to by finding the smallest bin such that
# y - q_left_integral is positive
edges = (y.unsqueeze(-1) - q_left_integrals).detach()
# y and q_left_integrals are between 0 and 1,
# so that their difference is at most 1.
# By setting the negative values to 2., we know that the
# smallest value left is the smallest positive
edges[edges < 0] = 2.0
edges = torch.clamp(torch.argmin(edges, dim=2), 0, b - 1).to(torch.long)
# Need special error handling because trying to index with mx
# if it contains nans will lock the GPU. (device-side assert triggered)
if (
torch.any(torch.isnan(edges)).item()
or torch.any(edges < 0)
or torch.any(edges >= b)
):
raise Exception("NaN detected in PWLinear bin indexing")
# Gather the left integrals at each edge. See comment about gathering in q_left_integrals
# for the unsqueeze
q_left_integrals = q_left_integrals.gather(2, edges.unsqueeze(-1)).squeeze(-1)
# Gather the slope at each edge.
q = q.gather(2, edges.unsqueeze(-1)).squeeze(-1)
# Build the output
x = (y - q_left_integrals) / q + edges * w
# Regularization: points must be strictly within the unit hypercube
# Use the dtype information from pytorch
eps = torch.finfo(x.dtype).eps
x = x.clamp(min=eps, max=1.0 - eps)
oob_mask = torch.logical_or(y < 0.0, y > 1.0).detach().float()
if outlier_passthru:
x = x * (1 - oob_mask) + y * oob_mask
q = q * (1 - oob_mask) + oob_mask
# Prepare the jacobian
logj = None
if compute_jacobian:
# logj = - torch.log(torch.prod(q, 1))
logj = -torch.sum(torch.log(q.float()), 1)
return x.detach(), logj
def unbounded_piecewise_quadratic_transform(
x, w_tilde, v_tilde, upper=1, lower=0, inverse=False
):
assert upper > lower
_range = upper - lower
inside_interval_mask = (x >= lower) & (x < upper)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(x)
log_j = torch.zeros_like(x)
outputs[outside_interval_mask] = x[outside_interval_mask]
log_j[outside_interval_mask] = 0
output, _log_j = piecewise_quadratic_transform(
(x[inside_interval_mask] - lower) / _range,
w_tilde[inside_interval_mask, :],
v_tilde[inside_interval_mask, :],
inverse=inverse,
)
outputs[inside_interval_mask] = output * _range + lower
if not inverse:
# the before and after transformation cancel out, so the log_j would be just as it is.
log_j[inside_interval_mask] = _log_j
else:
log_j = None
return outputs, log_j
def weighted_softmax(v, w):
# to avoid NaN...
v = v - torch.max(v, dim=-1, keepdim=True)[0]
v = torch.exp(v) + 1e-8 # to avoid NaN...
v_sum = torch.sum((v[..., :-1] + v[..., 1:]) / 2 * w, dim=-1, keepdim=True)
return v / v_sum
def piecewise_quadratic_transform(x, w_tilde, v_tilde, inverse=False):
"""Element-wise piecewise-quadratic transformation
Parameters
----------
x : torch.Tensor
*, The variable spans the D-dim unit hypercube ([0,1))
w_tilde : torch.Tensor
* x K defined in the paper
v_tilde : torch.Tensor
* x (K+1) defined in the paper
inverse : bool
forward or inverse
Returns
-------
c : torch.Tensor
*, transformed value
log_j : torch.Tensor
*, log determinant of the Jacobian matrix
"""
w = torch.softmax(w_tilde, dim=-1)
v = weighted_softmax(v_tilde, w)
w_cumsum = torch.cumsum(w, dim=-1)
# force sum = 1
w_cumsum[..., -1] = 1.0
w_cumsum_shift = F.pad(w_cumsum, (1, 0), "constant", 0)
cdf = torch.cumsum((v[..., 1:] + v[..., :-1]) / 2 * w, dim=-1)
# force sum = 1
cdf[..., -1] = 1.0
cdf_shift = F.pad(cdf, (1, 0), "constant", 0)
if not inverse:
# * x D x 1, (w_cumsum[idx-1] < x <= w_cumsum[idx])
bin_index = torch.searchsorted(w_cumsum, x.unsqueeze(-1))
else:
# * x D x 1, (cdf[idx-1] < x <= cdf[idx])
bin_index = torch.searchsorted(cdf, x.unsqueeze(-1))
w_b = torch.gather(w, -1, bin_index).squeeze(-1)
w_bn1 = torch.gather(w_cumsum_shift, -1, bin_index).squeeze(-1)
v_b = torch.gather(v, -1, bin_index).squeeze(-1)
v_bp1 = torch.gather(v, -1, bin_index + 1).squeeze(-1)
cdf_bn1 = torch.gather(cdf_shift, -1, bin_index).squeeze(-1)
if not inverse:
alpha = (x - w_bn1) / w_b.clamp(min=torch.finfo(w_b.dtype).eps)
c = (alpha**2) / 2 * (v_bp1 - v_b) * w_b + alpha * v_b * w_b + cdf_bn1
# just sum of log pdfs
log_j = torch.lerp(v_b, v_bp1, alpha).clamp(min=torch.finfo(c.dtype).eps).log()
# make sure it falls into [0,1)
c = c.clamp(min=torch.finfo(c.dtype).eps, max=1.0 - torch.finfo(c.dtype).eps)
return c, log_j
else:
# quadratic equation for alpha
# alpha should fall into (0, 1]. Since a, b > 0, the symmetry axis -b/2a < 0 and we should pick the larger root
# skip calculating the log_j in inverse since we don't need it
a = (v_bp1 - v_b) * w_b / 2
b = v_b * w_b
c = cdf_bn1 - x
alpha = (-b + torch.sqrt((b**2) - 4 * a * c)) / (2 * a)
inv = alpha * w_b + w_bn1
# make sure it falls into [0,1)
inv = inv.clamp(
min=torch.finfo(c.dtype).eps, max=1.0 - torch.finfo(inv.dtype).eps
)
return inv, None
|