Spaces:
Running
Running
File size: 8,227 Bytes
b4ad1cc d32000f 71a422e d32000f b4ad1cc d32000f 71a422e d32000f 8a6f9a8 b4ad1cc eac7684 b4ad1cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# Based on https://github.com/NVIDIA/flowtron/blob/master/data.py
# Original license text:
###############################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
###############################################################################
"""adapted from https://github.com/keithito/tacotron"""
import re
from string import punctuation
from functools import reduce
import torch
import torch.utils.data
#########
# REGEX #
#########
# Regular expression matching text enclosed in curly braces for encoding
_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)")
# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")
# Regular expression separating words enclosed in curly braces for cleaning
_arpa_re = re.compile(r"{[^}]+}|\S+")
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def remove_space_before_punctuation(text):
return re.sub(r"\s([{}](?:\s|$))".format(punctuation), r"\1", text)
class Cleaner:
def __init__(self, cleaner_names, phonemedict):
self.cleaner_names = cleaner_names
self.phonemedict = phonemedict
def __call__(self, text):
for cleaner_name in self.cleaner_names:
sequence_fns, word_fns = self.get_cleaner_fns(cleaner_name)
for fn in sequence_fns:
text = fn(text)
text = [
reduce(lambda x, y: y(x), word_fns, split) if split[0] != "{" else split
for split in _arpa_re.findall(text)
]
text = " ".join(text)
text = remove_space_before_punctuation(text)
return text
def get_cleaner_fns(self, cleaner_name):
sequence_fns = [lowercase, collapse_whitespace]
word_fns = []
return sequence_fns, word_fns
def get_symbols():
_punctuation = "'.,?! "
_special = "-+"
_letters = "абвгґдежзийклмнопрстуфхцчшщьюяєії"
symbols = list(_punctuation + _special + _letters)
return symbols
class TextProcessing:
def __init__(
self,
symbol_set,
cleaner_name,
heteronyms_path,
phoneme_dict_path,
p_phoneme,
handle_phoneme,
handle_phoneme_ambiguous,
prepend_space_to_text=False,
append_space_to_text=False,
add_bos_eos_to_text=False,
encoding="latin-1",
):
self.phonemedict = {}
self.p_phoneme = p_phoneme
self.handle_phoneme = handle_phoneme
self.handle_phoneme_ambiguous = handle_phoneme_ambiguous
self.symbols = get_symbols()
self.cleaner_names = cleaner_name
self.cleaner = Cleaner(cleaner_name, self.phonemedict)
self.prepend_space_to_text = prepend_space_to_text
self.append_space_to_text = append_space_to_text
self.add_bos_eos_to_text = add_bos_eos_to_text
if add_bos_eos_to_text:
self.symbols.append("<bos>")
self.symbols.append("<eos>")
# Mappings from symbol to numeric ID and vice versa:
self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self.id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text):
sequence = []
# Check for curly braces and treat their contents as phoneme:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += self.symbols_to_sequence(text)
break
sequence += self.symbols_to_sequence(m.group(1))
sequence += self.phoneme_to_sequence(m.group(2))
text = m.group(3)
return sequence
def sequence_to_text(self, sequence):
result = ""
for symbol_id in sequence:
if symbol_id in self.id_to_symbol:
s = self.id_to_symbol[symbol_id]
# Enclose phoneme back in curly braces:
if len(s) > 1 and s[0] == "@":
s = "{%s}" % s[1:]
result += s
return result.replace("}{", " ")
def clean_text(self, text):
text = self.cleaner(text)
return text
def symbols_to_sequence(self, symbols):
return [self.symbol_to_id[s] for s in symbols if s in self.symbol_to_id]
def encode_text(self, text, return_all=False):
text_clean = self.clean_text(text)
text = text_clean
text_encoded = self.text_to_sequence(text)
if self.prepend_space_to_text:
text_encoded.insert(0, self.symbol_to_id[" "])
if self.append_space_to_text:
text_encoded.append(self.symbol_to_id[" "])
if self.add_bos_eos_to_text:
text_encoded.insert(0, self.symbol_to_id["<bos>"])
text_encoded.append(self.symbol_to_id["<eos>"])
if return_all:
return text_encoded, text_clean
return text_encoded
class TextProcessor(torch.utils.data.Dataset):
def __init__(
self,
datasets,
filter_length,
hop_length,
win_length,
sampling_rate,
n_mel_channels,
mel_fmin,
mel_fmax,
f0_min,
f0_max,
max_wav_value,
use_f0,
use_energy_avg,
use_log_f0,
use_scaled_energy,
symbol_set,
cleaner_names,
heteronyms_path,
phoneme_dict_path,
p_phoneme,
handle_phoneme="word",
handle_phoneme_ambiguous="ignore",
speaker_ids=None,
include_speakers=None,
n_frames=-1,
use_attn_prior_masking=True,
prepend_space_to_text=True,
append_space_to_text=True,
add_bos_eos_to_text=False,
betabinom_cache_path="",
betabinom_scaling_factor=0.05,
lmdb_cache_path="",
dur_min=None,
dur_max=None,
combine_speaker_and_emotion=False,
**kwargs,
):
self.tp = TextProcessing(
symbol_set,
cleaner_names,
heteronyms_path,
phoneme_dict_path,
p_phoneme=p_phoneme,
handle_phoneme=handle_phoneme,
handle_phoneme_ambiguous=handle_phoneme_ambiguous,
prepend_space_to_text=prepend_space_to_text,
append_space_to_text=append_space_to_text,
add_bos_eos_to_text=add_bos_eos_to_text,
)
|