File size: 8,227 Bytes
b4ad1cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32000f
 
 
71a422e
 
 
d32000f
b4ad1cc
 
 
d32000f
 
 
 
 
 
 
71a422e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32000f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6f9a8
b4ad1cc
eac7684
b4ad1cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

# Based on https://github.com/NVIDIA/flowtron/blob/master/data.py
# Original license text:
###############################################################################
#
#  Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
###############################################################################

"""adapted from https://github.com/keithito/tacotron"""

import re
from string import punctuation
from functools import reduce


import torch
import torch.utils.data

#########
# REGEX #
#########

# Regular expression matching text enclosed in curly braces for encoding
_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)")

# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")

# Regular expression separating words enclosed in curly braces for cleaning
_arpa_re = re.compile(r"{[^}]+}|\S+")


def lowercase(text):
    return text.lower()


def collapse_whitespace(text):
    return re.sub(_whitespace_re, " ", text)


def remove_space_before_punctuation(text):
    return re.sub(r"\s([{}](?:\s|$))".format(punctuation), r"\1", text)


class Cleaner:
    def __init__(self, cleaner_names, phonemedict):
        self.cleaner_names = cleaner_names
        self.phonemedict = phonemedict

    def __call__(self, text):
        for cleaner_name in self.cleaner_names:
            sequence_fns, word_fns = self.get_cleaner_fns(cleaner_name)
            for fn in sequence_fns:
                text = fn(text)

            text = [
                reduce(lambda x, y: y(x), word_fns, split) if split[0] != "{" else split
                for split in _arpa_re.findall(text)
            ]
            text = " ".join(text)

        text = remove_space_before_punctuation(text)

        return text

    def get_cleaner_fns(self, cleaner_name):
        sequence_fns = [lowercase, collapse_whitespace]
        word_fns = []

        return sequence_fns, word_fns


def get_symbols():
    _punctuation = "'.,?! "
    _special = "-+"
    _letters = "абвгґдежзийклмнопрстуфхцчшщьюяєії"

    symbols = list(_punctuation + _special + _letters)

    return symbols


class TextProcessing:
    def __init__(
        self,
        symbol_set,
        cleaner_name,
        heteronyms_path,
        phoneme_dict_path,
        p_phoneme,
        handle_phoneme,
        handle_phoneme_ambiguous,
        prepend_space_to_text=False,
        append_space_to_text=False,
        add_bos_eos_to_text=False,
        encoding="latin-1",
    ):
        self.phonemedict = {}

        self.p_phoneme = p_phoneme
        self.handle_phoneme = handle_phoneme
        self.handle_phoneme_ambiguous = handle_phoneme_ambiguous

        self.symbols = get_symbols()
        self.cleaner_names = cleaner_name
        self.cleaner = Cleaner(cleaner_name, self.phonemedict)

        self.prepend_space_to_text = prepend_space_to_text
        self.append_space_to_text = append_space_to_text
        self.add_bos_eos_to_text = add_bos_eos_to_text

        if add_bos_eos_to_text:
            self.symbols.append("<bos>")
            self.symbols.append("<eos>")

        # Mappings from symbol to numeric ID and vice versa:
        self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
        self.id_to_symbol = {i: s for i, s in enumerate(self.symbols)}

    def text_to_sequence(self, text):
        sequence = []

        # Check for curly braces and treat their contents as phoneme:
        while len(text):
            m = _curly_re.match(text)
            if not m:
                sequence += self.symbols_to_sequence(text)
                break
            sequence += self.symbols_to_sequence(m.group(1))
            sequence += self.phoneme_to_sequence(m.group(2))
            text = m.group(3)

        return sequence

    def sequence_to_text(self, sequence):
        result = ""
        for symbol_id in sequence:
            if symbol_id in self.id_to_symbol:
                s = self.id_to_symbol[symbol_id]
                # Enclose phoneme back in curly braces:
                if len(s) > 1 and s[0] == "@":
                    s = "{%s}" % s[1:]
                result += s
        return result.replace("}{", " ")

    def clean_text(self, text):
        text = self.cleaner(text)
        return text

    def symbols_to_sequence(self, symbols):
        return [self.symbol_to_id[s] for s in symbols if s in self.symbol_to_id]

    def encode_text(self, text, return_all=False):
        text_clean = self.clean_text(text)
        text = text_clean

        text_encoded = self.text_to_sequence(text)

        if self.prepend_space_to_text:
            text_encoded.insert(0, self.symbol_to_id[" "])

        if self.append_space_to_text:
            text_encoded.append(self.symbol_to_id[" "])

        if self.add_bos_eos_to_text:
            text_encoded.insert(0, self.symbol_to_id["<bos>"])
            text_encoded.append(self.symbol_to_id["<eos>"])

        if return_all:
            return text_encoded, text_clean

        return text_encoded


class TextProcessor(torch.utils.data.Dataset):
    def __init__(
        self,
        datasets,
        filter_length,
        hop_length,
        win_length,
        sampling_rate,
        n_mel_channels,
        mel_fmin,
        mel_fmax,
        f0_min,
        f0_max,
        max_wav_value,
        use_f0,
        use_energy_avg,
        use_log_f0,
        use_scaled_energy,
        symbol_set,
        cleaner_names,
        heteronyms_path,
        phoneme_dict_path,
        p_phoneme,
        handle_phoneme="word",
        handle_phoneme_ambiguous="ignore",
        speaker_ids=None,
        include_speakers=None,
        n_frames=-1,
        use_attn_prior_masking=True,
        prepend_space_to_text=True,
        append_space_to_text=True,
        add_bos_eos_to_text=False,
        betabinom_cache_path="",
        betabinom_scaling_factor=0.05,
        lmdb_cache_path="",
        dur_min=None,
        dur_max=None,
        combine_speaker_and_emotion=False,
        **kwargs,
    ):
        self.tp = TextProcessing(
            symbol_set,
            cleaner_names,
            heteronyms_path,
            phoneme_dict_path,
            p_phoneme=p_phoneme,
            handle_phoneme=handle_phoneme,
            handle_phoneme_ambiguous=handle_phoneme_ambiguous,
            prepend_space_to_text=prepend_space_to_text,
            append_space_to_text=append_space_to_text,
            add_bos_eos_to_text=add_bos_eos_to_text,
        )