File size: 9,338 Bytes
c209d46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import math
import torch
import torchvision.transforms as T
from os import path
from torch.utils.data import DataLoader, WeightedRandomSampler
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.nn import CrossEntropyLoss
from torchmetrics.functional import accuracy
from timm import create_model, list_models
from timm.models.vision_transformer import VisionTransformer
from torchvision.datasets import ImageFolder
from utils import AverageMeter
from lightning import LightningDataModule, LightningModule
from huggingface_hub import PyTorchModelHubMixin, login
import torch.nn as nn
from lora import LoRA_qkv
PRE_SIZE = (256, 256)
IMG_SIZE = (224, 224)
STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
DATASET_DIRECTORY = path.join(path.dirname(__file__), "datasets")
CHECKPOINT_DIRECTORY = path.join(path.dirname(__file__), "checkpoints")
TRANSFORMS = {
"train": T.Compose([
T.Resize(PRE_SIZE),
T.RandomCrop(IMG_SIZE),
T.ToTensor(),
T.Normalize(**STATS)
]),
"val": T.Compose([
T.Resize(PRE_SIZE),
T.CenterCrop(IMG_SIZE),
T.ToTensor(),
T.Normalize(**STATS)
])
}
class myDataModule(LightningDataModule):
"""
Lightning DataModule for loading and preparing the image dataset.
Args:
ds_name (str): Name of the dataset directory.
batch_size (int): Batch size for data loaders.
num_workers (int): Number of workers for data loaders.
"""
def __init__(self, ds_name: str = "deities", batch_size: int = 32, num_workers: int = 8):
super(myDataModule, self).__init__()
self.ds_path = path.join(DATASET_DIRECTORY, ds_name)
assert path.exists(self.ds_path), f"Dataset {ds_name} not found in {DATASET_DIRECTORY}."
self.ds_name = ds_name
self.batch_size = batch_size
self.num_workers = num_workers
def setup(self, stage=None):
if stage == "fit" or stage is None:
self.train_ds = ImageFolder(root=path.join(self.ds_path, 'train'), transform=TRANSFORMS['train'])
self.val_ds = ImageFolder(root=path.join(self.ds_path, 'val'), transform=TRANSFORMS['val'])
# Number of classes
self.num_classes = len(self.train_ds.classes)
def train_dataloader(self) -> DataLoader:
# Weighted Random sampler for imbalanced dataset
class_samples = [0] * self.num_classes
for _, (_, label) in enumerate(self.train_ds):
class_samples[label] += 1
weights = [1.0 / class_samples[label] for _, label in self.train_ds]
self.sampler = WeightedRandomSampler(weights, len(weights), replacement=True)
return DataLoader(dataset=self.train_ds, batch_size=self.batch_size,
sampler=self.sampler, num_workers=self.num_workers, persistent_workers=True)
def val_dataloader(self) -> DataLoader:
return DataLoader(dataset=self.val_ds, batch_size=self.batch_size,
shuffle=False, num_workers=self.num_workers, persistent_workers=True)
class myModule(LightningModule, PyTorchModelHubMixin):
"""
Lightning Module for training and evaluating the Image classification model.
Args:
model_name (str): Name of the Vision Transformer model.
num_classes (int): Number of classes in the dataset.
freeze_flag (bool): Flag to freeze the base model parameters.
use_lora (bool): Flag to use LoRA (Local Rank Adaptation) for fine-tuning.
rank (int): Rank for LoRA if use_lora is True.
learning_rate (float): Learning rate for the optimizer.
weight_decay (float): Weight decay for the optimizer.
push_to_hf (bool): Flag to push model to Huggingface Hub.
commit_message (str): Commit message
repo_id (str): Huggingface repo id
"""
def __init__(self,
model_name: str = "vit_tiny_patch16_224",
num_classes: int = 25,
freeze_flag: bool = True,
use_lora: bool = False,
rank: int = None,
learning_rate: float = 3e-4,
weight_decay: float = 2e-5,
push_to_hf: bool = True,
commit_message: str = "my model",
repo_id: str = "Yegiiii/ideityfy"
):
super(myModule, self).__init__()
self.save_hyperparameters()
self.model_name = model_name
self.num_classes = num_classes
self.freeze_flag = freeze_flag
self.rank = rank
self.use_lora = use_lora
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.push_to_hf = push_to_hf
self.commit_message = commit_message
self.repo_id = repo_id
assert model_name in list_models(), f"Timm model name {model_name} not available."
timm_model = create_model(model_name, pretrained=True)
assert isinstance(timm_model, VisionTransformer), f"{model_name} not a Vision Transformer."
self.model = timm_model
if freeze_flag:
# Freeze the Timm model parameters
self.freeze()
if use_lora:
# Add LoRA matrices to the Timm model
assert freeze_flag, "Set freeze_flag to True for using LoRA fine-tuning."
assert rank, "Rank can't be None."
# self.model = LoRA_VisionTransformer(self.model, rank)
self.add_lora()
self.model.reset_classifier(num_classes)
# Loss function
self.criterion = CrossEntropyLoss()
# Validation metrics
self.top1_acc = AverageMeter()
self.top3_acc = AverageMeter()
self.top5_acc = AverageMeter()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def on_fit_start(self) -> None:
num_classes = self.trainer.datamodule.num_classes
assert num_classes == self.num_classes, \
f"Number of classes provided in the argument ({self.num_classes}) is not matching \
the number of classes in the dataset ({num_classes})."
def on_fit_end(self) -> None:
if self.push_to_hf:
login()
self.push_to_hub(repo_id=self.repo_id, commit_message=self.commit_message)
def configure_optimizers(self):
optimizer = AdamW(params=filter(lambda param: param.requires_grad, self.model.parameters()),
lr=self.learning_rate, weight_decay=self.weight_decay)
scheduler = CosineAnnealingLR(optimizer, self.trainer.max_epochs, 1e-6)
return ([optimizer], [scheduler])
def shared_step(self, x: torch.Tensor, y: torch.Tensor):
logits = self(x)
loss = self.criterion(logits, y)
return logits, loss
def training_step(self, batch, batch_idx) -> torch.Tensor:
x, y = batch
_, loss = self.shared_step(x, y)
self.log("train_loss", loss, prog_bar=True, logger=True, on_epoch=True)
return loss
def validation_step(self, batch, batch_idx) -> dict:
x, y = batch
logits, loss = self.shared_step(x, y)
self.top1_acc(
val=accuracy(logits, y, average="weighted", top_k=1, num_classes=self.num_classes))
self.top3_acc(
val=accuracy(logits, y, average="weighted", top_k=3, num_classes=self.num_classes))
self.top5_acc(
val=accuracy(logits, y, average="weighted", top_k=5, num_classes=self.num_classes))
metric_dict = {
"val_loss": loss,
"top1_acc": self.top1_acc.avg,
"top3_acc": self.top3_acc.avg,
"top5_acc": self.top5_acc.avg
}
self.log_dict(metric_dict, prog_bar=True, logger=True, on_epoch=True)
return metric_dict
def on_validation_epoch_end(self) -> None:
self.top1_acc.reset()
self.top3_acc.reset()
self.top5_acc.reset()
def add_lora(self):
self.w_As = []
self.w_Bs = []
for _, blk in enumerate(self.model.blocks):
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
lora_a_linear_q = nn.Linear(self.dim, self.rank, bias=False)
lora_b_linear_q = nn.Linear(self.rank, self.dim, bias=False)
lora_a_linear_v = nn.Linear(self.dim, self.rank, bias=False)
lora_b_linear_v = nn.Linear(self.rank, self.dim, bias=False)
self.w_As.append(lora_a_linear_q)
self.w_Bs.append(lora_b_linear_q)
self.w_As.append(lora_a_linear_v)
self.w_Bs.append(lora_b_linear_v)
blk.attn.qkv = LoRA_qkv(w_qkv_linear, lora_a_linear_q,
lora_b_linear_q, lora_a_linear_v, lora_b_linear_v)
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
if __name__ == "__main__":
# from torchinfo import summary
# module = myModule(freeze_flag=False)
# summary(module, (1, 3, 224, 224))
from datasets import load_dataset
dataset = load_dataset("Yegiiii/deities")
print(dataset)
|