Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import warnings
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import librosa
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from loguru import logger
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
is_hf = os.getenv("SYSTEM") == "spaces"
|
16 |
+
|
17 |
+
generate_kwargs = {
|
18 |
+
"language": "Japanese",
|
19 |
+
"do_sample": False,
|
20 |
+
"num_beams": 1,
|
21 |
+
"no_repeat_ngram_size": 5,
|
22 |
+
"max_new_tokens": 64,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
model_dict = {
|
27 |
+
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
|
28 |
+
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
|
29 |
+
"anime-whisper": "litagin/anime-whisper",
|
30 |
+
}
|
31 |
+
|
32 |
+
logger.info("Initializing pipelines...")
|
33 |
+
pipe_dict = {
|
34 |
+
k: pipeline(
|
35 |
+
"automatic-speech-recognition",
|
36 |
+
model=v,
|
37 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
38 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
39 |
+
)
|
40 |
+
for k, v in model_dict.items()
|
41 |
+
}
|
42 |
+
logger.success("Pipelines initialized!")
|
43 |
+
|
44 |
+
|
45 |
+
@spaces.GPU
|
46 |
+
def transcribe_common(audio: str, model: str) -> str:
|
47 |
+
if not audio:
|
48 |
+
return "No audio file"
|
49 |
+
filename = Path(audio).name
|
50 |
+
logger.info(f"Model: {model}")
|
51 |
+
logger.info(f"Audio: {filename}")
|
52 |
+
# Read and resample audio to 16kHz
|
53 |
+
try:
|
54 |
+
y, sr = librosa.load(audio, mono=True, sr=16000)
|
55 |
+
except Exception as e:
|
56 |
+
# First convert to wav if librosa cannot read the file
|
57 |
+
logger.error(f"Error reading file: {e}")
|
58 |
+
from pydub import AudioSegment
|
59 |
+
|
60 |
+
audio = AudioSegment.from_file(audio)
|
61 |
+
audio.export("temp.wav", format="wav")
|
62 |
+
y, sr = librosa.load("temp.wav", mono=True, sr=16000)
|
63 |
+
Path("temp.wav").unlink()
|
64 |
+
# Get duration of audio
|
65 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
66 |
+
logger.info(f"Duration: {duration:.2f}s")
|
67 |
+
if duration > 15:
|
68 |
+
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
|
69 |
+
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s"
|
70 |
+
start_time = time.time()
|
71 |
+
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
|
72 |
+
end_time = time.time()
|
73 |
+
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
|
74 |
+
return result
|
75 |
+
|
76 |
+
|
77 |
+
def transcribe_others(audio) -> tuple[str, str]:
|
78 |
+
result_v3 = transcribe_common(audio, "whisper-large-v3-turbo")
|
79 |
+
result_kotoba_v2 = transcribe_common(audio, "kotoba-whisper-v2.0")
|
80 |
+
return result_v3, result_kotoba_v2
|
81 |
+
|
82 |
+
|
83 |
+
def transcribe_anime_whisper(audio) -> str:
|
84 |
+
return transcribe_common(audio, "anime-whisper")
|
85 |
+
|
86 |
+
|
87 |
+
initial_md = """
|
88 |
+
# Anime-Whisper Demo
|
89 |
+
[**Anime Whisper**](https://huggingface.co/litagin/anime-whisper): 5千時間以上のアニメ調セリフと台本でファインチューニングされた日本語音声認識モデルのデモです。句読点や感嘆符がリズムや感情に合わせて自然に付き、NSFW含む非言語発話もうまく台本調に書き起こされます。
|
90 |
+
- デモでは**音声は15秒まで**しか受け付けません
|
91 |
+
- 日本語のみ対応 (Japanese only)
|
92 |
+
- 比較のために [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) と [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) も用意しています
|
93 |
+
pipeに渡しているkwargsは以下:
|
94 |
+
```python
|
95 |
+
generate_kwargs = {
|
96 |
+
"language": "Japanese",
|
97 |
+
"do_sample": False,
|
98 |
+
"num_beams": 1,
|
99 |
+
"no_repeat_ngram_size": 5,
|
100 |
+
"max_new_tokens": 64, # 結果が長いときは途中で打ち切られる
|
101 |
+
}
|
102 |
+
```
|
103 |
+
"""
|
104 |
+
|
105 |
+
with gr.Blocks() as app:
|
106 |
+
gr.Markdown(initial_md)
|
107 |
+
audio = gr.Audio(type="filepath")
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
gr.Markdown("### Anime-Whisper")
|
111 |
+
button_galgame = gr.Button("Transcribe with Anime-Whisper")
|
112 |
+
output_galgame = gr.Textbox(label="Result")
|
113 |
+
gr.Markdown("### Comparison")
|
114 |
+
button_others = gr.Button("Transcribe with other models")
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
gr.Markdown("### Whisper-Large-V3-Turbo")
|
118 |
+
output_v3 = gr.Textbox(label="Result")
|
119 |
+
with gr.Column():
|
120 |
+
gr.Markdown("### Kotoba-Whisper-V2.0")
|
121 |
+
output_kotoba_v2 = gr.Textbox(label="Result")
|
122 |
+
|
123 |
+
button_galgame.click(
|
124 |
+
transcribe_anime_whisper,
|
125 |
+
inputs=[audio],
|
126 |
+
outputs=[output_galgame],
|
127 |
+
)
|
128 |
+
button_others.click(
|
129 |
+
transcribe_others,
|
130 |
+
inputs=[audio],
|
131 |
+
outputs=[output_v3, output_kotoba_v2],
|
132 |
+
)
|
133 |
+
|
134 |
+
app.launch(inbrowser=True)
|