from . import networks from .base_model import BaseModel class TestModel(BaseModel): """This TestModel can be used to generate CycleGAN results for only one direction. This model will automatically set '--dataset_mode single', which only loads the images from one collection. See the test instruction for more details. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser parser: is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. The model can only be used during test time. It requires '--dataset_mode single'. You need to specify the network using the option '--model_suffix'. """ assert not is_train, "TestModel cannot be used during training time" parser.set_defaults(dataset_mode="single") parser.add_argument( "--model_suffix", type=str, default="", help="In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.", ) return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ assert not opt.isTrain BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call self.loss_names = [] # specify the images you want to save/display. The training/test scripts will call self.visual_names = ["real", "fake"] # specify the models you want to save to the disk. The training/test scripts will call and self.net_names = ["G" + opt.model_suffix] # only generator is needed. self.net_G = networks.define_G( opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids, ) # assigns the model to self.netG_[suffix] so that it can be loaded # please see setattr(self, "net_G" + opt.model_suffix, self.net_G) # store netG in self. def set_input(self, input): """Unpack input data from the dataLoader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. We need to use 'single_dataset' a dataset mode. It only loads images from one domain. """ self.real = input["A"].to(self.device) self.image_paths = input["A_paths"] def forward(self): """Run forward pass.""" self.fake = self.net_G(self.real) # G(real) def optimize_parameters(self): """No optimization for test model.""" pass