CycleGAN / util /visualizer.py
Yanguan's picture
0
58da73e
import ntpath
import os
import sys
import time
from pathlib import Path
from subprocess import PIPE, Popen
import numpy as np
from util import now_time
from . import html, util
try:
import wandb
except ImportError:
print(
'Warning: wandb package cannot be found. The option "--use_wandb" will result in error.'
)
if sys.version_info[0] == 2:
VisdomExceptionBase = Exception
else:
VisdomExceptionBase = ConnectionError
def save_images(
webpage, visuals, image_path, aspect_ratio=1.0, width=256, use_wandb=False
):
"""Save images to the disk.
Parameters:
use_wandb:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
webpage.add_header(name)
ims, txts, links = [], [], []
ims_dict = {}
for label, im_data in visuals.items():
im = util.tensor2im(im_data)
image_name = "%s_%s.png" % (name, label)
save_path = Path(image_dir, image_name)
util.save_image(im, save_path, aspect_ratio=aspect_ratio)
ims.append(image_name)
txts.append(label)
links.append(image_name)
if use_wandb:
ims_dict[label] = wandb.Image(im)
webpage.add_images(ims, txts, links, width=width)
if use_wandb:
wandb.log(ims_dict)
class Visualizer:
"""This class includes several functions that can display/save images and print/save logging information.
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: connect to a visdom server
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.display_id = opt.display_id
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
self.port = opt.display_port
self.saved = False
self.use_wandb = opt.use_wandb
self.wandb_project_name = opt.wandb_project_name
self.current_epoch = 0
self.ncols = opt.display_ncols
if (
self.display_id > 0
): # connect to a visdom server given <display_port> and <display_server>
import visdom
self.vis = visdom.Visdom(
server=opt.display_server, port=opt.display_port, env=opt.display_env
)
if not self.vis.check_connection():
self.create_visdom_connections()
if self.use_wandb:
self.wandb_run = (
wandb.init(project=self.wandb_project_name, name=opt.name, config=opt)
if not wandb.run
else wandb.run
)
self.wandb_run._label(repo="CycleGAN")
# create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
if self.use_html:
self.web_dir = Path(opt.checkpoints_dir, opt.name, "web" + now_time())
self.img_dir = self.web_dir.joinpath("images")
print("Create web directory %s..." % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = Path(opt.checkpoints_dir, opt.name, "loss_log.txt")
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write(
"================ Training Loss (%s) ================\n" % now
)
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def create_visdom_connections(self):
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port >"""
cmd = sys.executable + " -m visdom.server -p %d &>/dev/null &" % self.port
print("\n\nCould not connect to Visdom server. \n Trying to start a server....")
print("Command: %s" % cmd)
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
def display_current_results(self, visuals, epoch, save_result):
"""Display current results on visdom; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
epoch (int) - - the current epoch
save_result (bool) - - if save the current results to an HTML file
"""
if self.display_id > 0: # show images in the browser using visdom
ncols = self.ncols
if ncols > 0: # show all the images in one visdom panel
ncols = min(ncols, len(visuals))
h, w = next(iter(visuals.values())).shape[:2]
table_css = """<style>
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
</style>""" % (
w,
h,
) # create a table css
# create a table of images.
title = self.name
label_html = ""
label_html_row = ""
images = []
image_numpy = None
idx = 0
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
label_html_row += "<td>%s</td>" % label
images.append(image_numpy.transpose([2, 0, 1]))
idx += 1
if idx % ncols == 0:
label_html += "<tr>%s</tr>" % label_html_row
label_html_row = ""
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
while idx % ncols != 0:
images.append(white_image)
label_html_row += "<td></td>"
idx += 1
if label_html_row != "":
label_html += "<tr>%s</tr>" % label_html_row
try:
self.vis.images(
images,
nrow=ncols,
win=self.display_id + 1,
padding=2,
opts=dict(title=title + " images"),
)
label_html = "<table>%s</table>" % label_html
self.vis.text(
table_css + label_html,
win=self.display_id + 2,
opts=dict(title=title + " labels"),
)
except VisdomExceptionBase:
self.create_visdom_connections()
else: # show each image in a separate visdom panel;
idx = 1
try:
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
self.vis.image(
image_numpy.transpose([2, 0, 1]),
opts=dict(title=label),
win=self.display_id + idx,
)
idx += 1
except VisdomExceptionBase:
self.create_visdom_connections()
if self.use_wandb:
columns = [key for key, _ in visuals.items()]
columns.insert(0, "epoch")
result_table = wandb.Table(columns=columns)
table_row = [epoch]
ims_dict = {}
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
wandb_image = wandb.Image(image_numpy)
table_row.append(wandb_image)
ims_dict[label] = wandb_image
self.wandb_run.log(ims_dict)
if epoch != self.current_epoch:
self.current_epoch = epoch
result_table.add_data(*table_row)
self.wandb_run.log({"Result": result_table})
if self.use_html and (
save_result or not self.saved
): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = Path(self.img_dir, "epoch%.3d_%s.png" % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(
self.web_dir, "Experiment name = %s" % self.name, refresh=1
)
for n in range(epoch, 0, -1):
webpage.add_header("epoch [%d]" % n)
ims, txts, links = [], [], []
for label, image_numpy in visuals.items():
# image_numpy = util.tensor2im(image)
img_path = "epoch%.3d_%s.png" % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
def plot_current_losses(self, epoch, counter_ratio, losses):
"""display the current losses on visdom display: dictionary of error labels and values
Parameters:
epoch (int) -- current epoch
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
"""
if not hasattr(self, "plot_data"):
self.plot_data = {"X": [], "Y": [], "legend": list(losses.keys())}
self.plot_data["X"].append(epoch + counter_ratio)
self.plot_data["Y"].append([losses[k] for k in self.plot_data["legend"]])
try:
self.vis.line(
X=np.stack(
[np.array(self.plot_data["X"])] * len(self.plot_data["legend"]), 1
),
Y=np.array(self.plot_data["Y"]),
opts={
"title": f"{self.name} loss over time",
"legend": self.plot_data["legend"],
"xlabel": "epoch",
"ylabel": "loss",
},
win=self.display_id,
)
except VisdomExceptionBase:
self.create_visdom_connections()
if self.use_wandb:
self.wandb_run.log(losses)
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = f"(epoch: {epoch:>2d}, iters: {iters:>4d}, time: {t_comp:.3f}, data: {t_data:.3f})"
for k, v in losses.items():
message += f" {k:s}: {v:.3f}"
print(message)
with open(self.log_name, "a") as log_file:
log_file.write(f"{message:s}\n")