CycleGAN / data /image_folder.py
Yanguan's picture
0
58da73e
"""A modified image folder class
We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py)
so that this class can load images from both current directory and its subdirectories.
"""
import torch.utils.data as data
from PIL import Image
import os
from pathlib import Path
IMG_EXTENSIONS = [".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP", ".tif", ".TIF", ".tiff", ".TIFF"]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir, max_dataset_size=float("inf")):
images = []
assert os.path.isdir(dir), "%s is not a valid directory" % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
return images[: min(max_dataset_size, len(images))]
def default_loader(path):
return Image.open(path).convert("RGB")
class ImageFolder(data.Dataset):
"""根据文件夹制作数据集"""
def __init__(self, root, transform=None, return_paths=False, loader=default_loader):
imgs = make_dataset(root)
if len(imgs) == 0:
raise (RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.transform = transform
self.return_paths = return_paths
self.loader = loader
def __getitem__(self, index):
path = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.return_paths:
return img, path
else:
return img
def __len__(self):
return len(self.imgs)